2015, Number 1
<< Back Next >>
Ann Hepatol 2015; 14 (1)
Wnt/β-catenin signaling pathway in hepatocellular carcinomas cases from Colombia
Suarez MI, Uribe D, Jaramillo CM, Osorio G, Perez JC, Lopez R, Hoyos S, Hainaut P, Pineau P, Maria-C Navas
Language: English
References: 50
Page: 64-74
PDF size: 692.75 Kb.
ABSTRACT
Background and aim. Hepatocellular carcinoma (HCC) is the most common primary liver cancer diagnosed
worldwide. Deregulation of Wnt/β-catenin pathway has been associated with the development of HCC in a
substantial number of cases in Europe and far less in Asia. Nothing is known about this pathway in HCC
cases from South America. This study aimed to investigate the frequency of mutations in β-catenin gene
(CTNNB1) and the subcellular localization of β-catenin in HCC cases from Colombia.
Material and methods.
We determine by direct sequencing the frequency of mutations in exon 3 of CTNNB1 gene and by immunohistochemistry
the subcellular localization of β-catenin in 54 samples of HCC obtained from three pathology
units in Bogota and Medellin cities.
Results. Only three HCC cases (5.6%) were found mutated at residues
(G34E, S45P, P44S, T41I) important for phosphorylation and ubiquitination of β-catenin protein. Strikingly,
nuclear or cytoplasmic accumulation of β-catenin, hallmark of Wnt pathway activation, was found in 42.6%
HCC cases (23/54). Interestingly, β-catenin accumulation was significantly more frequent in young patients
and hepatitis B virus-related HCC.
Conclusions. Although, CTNNB1 exon 3 mutations are not frequent in
HCC from Colombian patients, our findings indicate that Wnt/β-catenin signaling is activated in 42.6% of HCC
samples. Furthermore, Wnt signaling was demonstrated in HCC cases associated of HBV infection, one of
the most important HCC risk factors in Colombia.
REFERENCES
GLOBOCAN. Cancer Incidence and Mortality World wide in 2008. Available http://www.iarc.fr/en/media-centre/ iarcnews/2010/globocan2008.php
McGlynn KA, London WT. The global epidemiology of hepatocellular carcinoma: present and future. Clinical Liver Disease 2011; 15: 223-43, vii-x.
Blonski W, Kotlyar DS, Forde KA. Non-viral causes of hepatocellular carcinoma. World Journal of Gastroenterology 2010; 16: 3603-15.
Nishida N, Goel A. Genetic and epigenetic signatures in human hepatocellular carcinoma: a systematic review. Currents Genomics 2011; 12: 130-7.
Kim YD, Park CH, Kim HS, Choi Sk, Rew JS, Kim DY, Koh YS, et al. Genetic alterations of Wnt signaling pathway-associated genes in hepatocellular carcinoma. J Gastroenterol Hepatol 2008; 23: 110-18.
Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, Calderaro J, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Natural Genetics 2012; 44: 694-8.
Huang H, He X. Wnt/beta-catenin signaling: new (and old) players and new insights. Current Opinion in Cell Biology 2008; 20: 119-25.
Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006; 127: 469-80.
Gumbiner BM. Regulation of cadherin-mediated adhesion in morphogenesis. Natural Reviews Molecular Cell Biology 2005; 6: 622-34.
Taelman VF, Dobrowolski R, Plouhinec JL, Fuentealba LC, Vorwald PP, Gumper I, Sabatini DD, et al. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 2010; 143: 1136-48.
Gan XQ, Wang JY, Xi Y, Wu ZL, Li YP, Li L. Nuclear Dvl, c- Jun, beta-catenin, and TCF form a complex leading to stabilization of beta-catenin-TCF interaction. J Cell Biol 2008; 180: 1087-100.
Yamashita T, Budhu A, Forgues M, Wang XW. Activation of hepatic stem cell marker EpCAM by Wnt-beta-catenin signaling in hepatocellular carcinoma. Can Res J 2007; 67(22): 10831-9.
Provost E, Yamamoto Y, Lizardi I, Stern J, De’Aquila TG, Gaynor RB, Rimm DL, et al. Functional correlates of mutations in beta-catenin exon 3 phosphorylation sites. J Biologic Chem 2003; 278: 31781-9.
Austinat M, Dunsch R, Wittekind C, Tannapfel A, Gebhardt R, Gaunitz F. Correlation between beta-catenin mutations and expression of Wnt-signaling target genes in hepatocellular carcinoma. Molecular Cancer 2008; 7: 21.
Ban KC, Singh H, Krishnan R, Seow HF. GSK-3beta phosphorylation and alteration of beta-catenin in hepatocellular carcinoma. Cancer Letter 2003; 199: 201-8.
Thompson MD, Monga SP. WNT/beta-catenin signaling in liver health and disease. Hepatology 2007; 45: 1298-305.
Zucman-Rossi J, Benhamouche S, Godard C, Boyault S, Grimber G, Balabud C, Cunha AS, et al. Differential effects of inactivated Axin1 and activated beta-catenin mutations in human hepatocellular carcinomas. Oncogene 2007; 26: 774-80.
Ozen C, Yildiz G, Dagcan AT, Cevik D, Ors A, Keles U, Topel H, et al. Genetics and epigenetics of liver cancer. Natural Biotechnology 2013; 30: 381-4.
Navas MC, Suarez I, Carreño A, Uribe D, Rios WA, Cortes- Mancera F, Martel G, et al. Hepatitis B and Hepatitis C Infection Biomarkers and TP53 Mutations in Hepatocellular Carcinomas from Colombia. Hepatitis Research and Treatment 2011. doi:10.1155/2011/582945.
Hosny G, Farahat N, Tayel H, Hainaut P. Ser-249 TP53 and CTNNB1 mutations in circulating free DNA of Egyptian patients with hepatocellular carcinoma versus chronic liver diseases. Cancer Letter 2008; 264: 201-8.
Li C, Wong W. Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection. Proceedings of the Nationall Academy of Science USA 2001; 98: 31-6.
Thompson MD, Monga SP. WNT/beta-catenin signaling in liver health and disease. Hepatology 2007; 45(5): 1298-305.
Monga SP. Role of Wnt/β-catenin signaling in liver metabolism and cancer. The International Journal of Biochemistry & Cell Biology 2011; 43: 1021-9.
Taniguchi K, Roberts LR, Aderca IN, Dong X, Qian C, Murphy LM, Nagorney DM, et al. Mutational spectrum of betacatenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene 2002; 21: 4863-71.
Katoh H, Shibata T, Kokubu A, Ojima H, Kosuge T, Kanai Y, Hiroshashi S. Genetic inactivation of the APC gene contributes to the malignant progression of sporadic hepatocellular carcinoma: a case report. Genes Chromosomes Cancer 2006; 45: 1050-7.
Garcia S, Martini F, De Micco C, Andrac L, Hardwigsen J, Sappa P, Lavaut MN, et al. Immunoexpression of E-cadherin and beta-catenin correlates to survival of patients with hepatocellular carcinomas. International Journal Oncology 1998; 12: 443-7.
Lim SO, Gu JM, Kim MS, Park CK, Cho JW, Park YM, Jung G. Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology 2008; 135: 2128-40.
Kim YD, Park CH, Kim HS, Choi Sk, Rew JS, Kim DY, Koh YS, et al. Genetic alterations of Wnt signaling pathway-associated genes in hepatocellular carcinoma. J Gastroenterol Hepatol 2008; 23: 110-8
Merle P, de la Monte S, Kim M, Herrmann M, Tanaka S, Von Dem Bussche A, Kew MC, et al. Functional consequences of frizzled-7 receptor overexpression in human hepatocellular carcinoma. Gastroenterology 2004; 127: 1110-22.
Kalinina O, Marchio A, Urbanskii AI, Tarkova AB, Rebbani K, Granov DA, Dejean A, et al. Somatic changes in primary liver cancer in Russia: a pilot study. Mutation Research 2013; 755: 90-9.
Piedra J, Martinez D, Castano J, Miravet S, Dunach M, de Herreros AG. Regulation of beta-catenin structure and activity by tyrosine phosphorylation. J Biol Chem 2001; 276: 20436-43.
Cui J, Zhou X, Liu Y, Tang Z, Romeih M. Alterations of beta-catenin and Tcf-4 instead of GSK-3beta contribute to activation of Wnt pathway in hepatocellular carcinoma. Chinese Medical Journal (Engl) 2003; 116: 1885-92.
Hsu HC, Jeng YM, Mao TL, Chu JS, Lai PL, Peng SY. Betacatenin mutations are associated with a subset of lowstage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am J Pathol 2000; 157: 763-70.
Tien LT, Ito M, Nakao M, Niino D, Serik M, Nakashima M, Wen CY, et al. Expression of beta-catenin in hepatocellular carcinoma. World Journal Gastroenterology 2005; 11: 2398-401. Suarez MI, et al. , 2015; 14 (1): 64-74 74
Tornesello ML, Buonaguro L, Tatangelo F, Botti G, Izzo F, Buonaguro FM. Mutations in TP53, CTNNB1 and PIK3CA genes in hepatocellular carcinoma associated with hepatitis B and hepatitis C virus infections. Genomics 2013; 102: 74-83.
Su H, Zhao J, Xiong Y, Xu T, Zhou F, Yuan Y, Zhang Y, et al. Large-scale analysis of the genetic and epigenetic alterations in hepatocellular carcinoma from Southeast China. Mutation Research 2008; 641: 27-35.
Wong CM, Fan ST, Ng IO. Beta-catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance. Cancer 2001; 92: 136-45.
Devereux TR, Stern MC, Flake GP, Yu MC, Zhang ZQ, London SJ, Taylor SA. CTNNB1 mutations and beta-catenin protein accumulation in human hepatocellular carcinomas associated with high exposure to aflatoxin B1. Molecular Carcinogenesis 2001; 31: 68-73.
Park JY, Park WS, Nam SW, Kim SY, Lee SH, Yoo NJ, Lee YJ, et al. Mutations of beta-catenin and AXIN I genes are a late event in human hepatocellular carcinogenesis. Liver International 2005; 25: 70-6.
Cortes-Mancera F, Loureiro CL, Hoyos S, Restrepo JC, Correa G, Jaramillo S, Norder H, et al. Etiology and Viral Genotype in Patients with End-Stage Liver Diseases admitted to a Hepatology Unit in Colombia. Hepatology Research Treatment 2011. doi:10.1155/2011/363205
Laurent-Puig P, Legoix P, Bluteau O, Belquiti J, Franco D, Binot F, Monges G, et al. Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology 2001; 120: 1763-73.
Ishizaki Y, Ikeda S, Fujimori M, Shimizu Y, Kurihara T, Itamoto T, Kikuchi A, et al. Immunohistochemical analysis and mutational analyses of beta-catenin, Axin family and APC genes in hepatocellular carcinomas. International Journal Oncology 2004; 24: 1077-83.
Edamoto Y, Hara A, Biernat W, Terracciano L, Cathomas G, Riehle HM, Matsuda M, Fujii H, et al. Alterations of RB1, p53 and Wnt pathways in hepatocellular carcinomas associated with hepatitis C, hepatitis B and alcoholic liver cirrhosis. International Journal of Cancer 2003; 106: 334-41.
Huang H, Fujii H, Sankila A, Mahler-Araujo BM, Matsuda M, Cathomas G, Ohgaki H. Beta-catenin mutations are frequent in human hepatocellular carcinomas associated with hepatitis C virus infection. Am J Pathol 1999; 155: 1795-1801.
Liu J, Ding X, Tang J, Cao Y, Peng Hu, Zhou F, Shan X, et al. Enhancement of canonical Wnt/β-catenin signaling activity by HCV core protein promotes cell growth of hepatocellular carcinoma cells. PLoS One 2011; 6: e27496. doi: 10.1371/journal.pone.0027496
Zhang Y, Wei W, Cheng N, Wang K, Li B, Jiang X, Sun S. Hepatitis C virus-induced up-regulation of microRNA-155 promotes hepatocarcinogenesis by activating Wnt signaling. Hepatology 2012; 56: 1631-40.
Takagi H, Sasaki S, Suzuki H, Toyota M, Maruyama R, Nojima M, Yamamoto H, et al. Frequent epigenetic inactivation of SFRP genes in hepatocellular carcinoma. J Gastroenterol 2008; 43: 378-89.
Xie Q, Chen L, Shan X, Shan X, Tang J, Zhou F, Chen Q, et al. Epigenetic silencing of SFRP1 and SFRP5 by hepatitis B virus X protein enhances hepatoma cell tumorigenicity through Wnt signaling pathway. International Journal of Cancer 2014; 135: 635-46.
Hsieh A, Kim HS, Lim SO, Yu DY, Jung G. Hepatitis B viral X protein interacts with tumor suppressor adenomatous polyposis coli to activate Wnt/β-catenin signaling. Cancer Letter 2011; 300: 162-72.
Lee JM, Yang J, Newell P, Singh S, Parwani A, Friedman SL, Nejak-Bowen KN, et al. β-Catenin signaling in hepatocellular cancer: Implications in inflammation, fibrosis, and proliferation. Cancer Letter 2014; 343: 90-7.