2015, Number 1
<< Back Next >>
Rev Esp Med Quir 2015; 20 (1)
Polymorphisms and prostate cancer. Current perspective
García-Carrillo RA
Language: Spanish
References: 31
Page: 67-71
PDF size: 425.14 Kb.
ABSTRACT
Prostate cancer is a disease with an important increase in morbidity
and mortality worldwide as much as in our country. There is a lot of
information in genetic research in relation with prostate cancer and is
well known few mutation in some people that transmit to their descendants
and adquire frequency in population after multiple generations
named Single Nucleotide Polymorphism (SNP) that cause the disease.
A extensive review in national and international electronic media was
done in relation with SNP and prostate cancer. There are more tan 10
millions SNP described, however, it has been estimated that more tan 20
millions of SNP exist, and just 70 of them has been confirmed in association
with prostate cancer. The investigations of the complete genome
association are power tools that has been improved our understandig
of the genetic of cancer and this will lead to the identification of new
pathways of carcinogenesis.
REFERENCES
Arcangeli S, Pinzi V, Arcangeli G. Epidemiology of prostate cancer and treatment remarks. World J Radiol 2012;4:241- 246.
Mottet N, Bastian P, Bellmunt J et al. Guidelines on prostate cancer. European Urology 2014;1-172.
Guideline for the management of clinically localized prostate cáncer. AUA 2007.
Mohler J, Robert R, Boston B. Prostate cáncer. JNCCN 2010;8:161-201.
Instituto Nacional de Estadística y Geografía (INEGI). Estadísticas a Propósito del Día Mundial contra el Cáncer. México, DF, 4 de febrero de 2010.
International agency for research. World Health Organization. GLOBOCAN 2012. Estimated cancer incidence, mortality, preva- lence and disability-adjusted life years (dalys) worldwide in 2012. Disponible en: http:// globocan. iarc.fr
Guía práctica clínica. Diagnóstico y tratamiento del cáncer de próstata en el segundo y tercer nivel de atención. Consejo de salubridad general 2009.
Ruiz J. Relación de la susceptibilidad genética y de las características anatomopatológicas del cáncer de próstata con los polimorfismos de nucleótido simple. Universidad Autónoma de Barcelona 2012.
Checa M. Polimorfismos genéticos: importancia y aplicaciones. Rev Inst Nal Enf Resp Mex 2007;20:213-221.
Chanock S. Technologic issues in GWAS and follow-up studies. NCI 2007.
Iniesta R, Guinó E, Moreno V. Análisis estadístico de polimorfismos genéticos en estudios epidemiológicos. Gac Sanit 2005;19:333-41.
Ramirez J, Vargas G, Tovilla C, et al. Polimorfismos de un solo nucleótido (SNP): implicaciones funcionales de los SNP reguladores (rSNP) y de los SNP-ARN estructurales (srSNP) en enfermedades complejas. Gaceta Médica de México 2013;149:220-228.
Schork N, Fallin D Lanchbury J. Single nucleotide polymorphisms and the future of genetic epidemiology. Clin Genet 2000;58:250-264.
Stadler Z, Thom P, Robson M, et al. Genome-Wide Association Studies of Cancer. J Clin Oncol 2010;28:4255-4267.
Pethe V, Bapat B. Molecular genetic etiology of prostate cancer. The open genomics journal 2008;1:13-21.
Arap M. Biología molecular en el cáncer de próstata. Arch Esp Urol 2010;63:1-9.
Cybulski C, Wokolorczyk D, Kluzniak W, et al. A personalized approach to prostate cáncer screening based on genotyping of risk founder alleles. BJC 2013;108:2601-2609.
Coughlin S, Hall I. A review of genetic polymorphisms and prostate cáncer risk. Ann Epidemiol 2002;12:182-196.
Ding G, Liu F, Xu J, et al. Asociación entre los polimorfismos de genes de mieloperoxidasa y la susceptibilidad a cáncer de próstata: un estudio caso-control en la población de nacionalidad china. Actas Urol Esp 2013;37:79-82.
Ntais C, Polycarpou A, Tsatsoulis. Molecular epidemiology of prostate cancer: androgens and polymorphisms in androgen-related genes. European Journal of Endocrinology 2003;149:469-477.
Klein R, Hallden C, Gupta A. Evaluation of multiple risk-associated single nucleotide polymorphisms versus prostatespecific antigen at baseline to predict prostate cancer in unscreened men. European Urology 2012;61:471-477.
Hughes L, Zhu F, Ross E, et al. Assessing the clinical role of genetic markers of early-onset prostate cancer among high-risk men enrolled in prostate cáncer early detection. Cancer Epidemiol Biomarkers Prev 2012;21:53-60.
Nakagawa H, Akamatsu S, Takata R, et al. Prostate cancer genomics, biology, and risk assessment through genomewide association studies. Cancer Sci 2012;103:607-613.
Van den Broeck, Joniau S, Clinckemalie L, et al. The role of single nucleotide polymorphisms in predicting prostate cancer risk and therapeutic decision making. Bio Med Research International 2014;1-16.
Okugi H, Nazakato H, Matsiu H, et al. Association of the polymorphisms of genes involved on androgen metabolism and signaling pathways with familial prostate cáncer risk in Japanese population. Cancer Detection and Prevention 2006;30:262-268.
Ren S, Xu J, Zhou T, et al. Plateau effect of prostate cancer risk-associated SNPs in discriminanting prostate biopsy outcomes. The prostate 2013;73:1824-1835.
Thalmann G. Itis time tomoveon. European Urology 2012;61:478-479.
Preuss C, Das M, Pathak V. Genomics and natural products: role of bioinformatics and recent patents. Recent Patents on Biotechnology 2014;8:144-151.
Deutsch E, Maggiorella L, Eschwege P. Enviromental, genetic, and molecular features of prostate cancer. Lancet Oncol 2004;5:303-313.
Farrell J, Petrovics G, McLeod D. Genetic and molecular differences in prostate carcinogenesis between African american and Caucasian American men. Int J Mol Sci 2013;14:15510-15531.
Visakorpi T. The molecular genetics of prostate cancer. Urology 2003;62:3-10.