2014, Number 1
Next >>
Rev Cubana Neurol Neurocir 2014; 4 (1)
Oxidative damage and antioxidant defense in patient with ataxia telangiectasia (case–control study)
Riverón FG, Lemus MG, Lantigua CAP, Marcos PL, Bataille GA, Martínez BO
Language: Spanish
References: 25
Page: 1-6
PDF size: 229.18 Kb.
ABSTRACT
Objective: To determine markers of oxidative damage and antioxidant defense in patients with ataxia–telangiectasia (AT).
Methods: We performed an observational case–control study. We included a total of 5 patients of both sexes and 15 healthy children as controls. Were determined plasma levels of malondialdehyde and advanced oxidation protein as markers of oxidative damage and the intraerythrocytic activities of antioxidant enzymes Cu–Zn superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and levels of free thiol groups, as markers of antioxidant defense.
Results: Patients showed a significant increase in plasma levels of malondialdehyde (0.95 µM versus 0.54 µM, p= 0.020) and an increase in the activities of superoxide dismutase (4612.0 U/g hemoglobin (Hb) versus 3142.5 U/g Hb, p= 0.010) and catalase (2346.9 U/g Hb versus 1380.9 U/g Hb, p= 0.020) compared to controls.
Conclusions: These findings are indicative of the presence of a maintained state of oxidative stress in patients with AT. The results from this study could be the support for other studies for the application of therapeutic strategies based on the use of antioxidants.
REFERENCES
Jones DP. Redefining Oxidative Stress. Antioxid Redox Signal. 2006;8:1865–79.
Ziv S, Brenner O, Amariglio N, Smorodinsky NI, Galron R, Carrion DV, et al. Impaired genomic stability and increased oxidative stress exacerbate different features of Ataxia–telangiectasia. Hum Mol Genet. 2005;14(19):2929–43.
Degan P, d'Ischia M, Pallardó FV, Zatterale A, Brusco A, Calzone R, et al. Glutathione levels in blood from ataxia telangiectasia patients suggests in vivo adaptive mechanisms to oxidative stress. Clinical Biochemistry. 2007;40:666–70.
Guo Z, Kozlov S, Lavin M, Person MD, Paull TT. ATM Activation by Oxidative Stress. Science. 2010;330(6003):517–21.
Watters DJ. Oxidative stress in ataxia telangiectasia. Redox Report. 2003;8(1):23–9.
Lavin MF, Gueven N, Bottle S, Gatti RA. Current and potential therapeutic strategies for the treatment of ataxia-telangiectasia. Br Med Bull. 2007;81-82:129-47.
Witko SV, Friedlander M, Nguyen KT, Capeillère BC, Thu NA, Zingraff J, et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996;49:1304-13.
Marklund S, Marklund G. Involvement of superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47:469–74.
Aebi H. Catalase in vitro. Meth Enzymol. 1984;105:121–6.
Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70:158–69.
Carlberg I, Mannervik B. Glutathione reductase. Meth Enzymol. 1985;113:485–90.
Sedlak J, Lidsay RH. Estimation of total protein bound and non–protein sulfhydryl group in tissue with Ellman’s reagent. Anal Biochem. 1968;25:192–205.
Johnson WM, Wilson–Delfosse A, Mieyal JJ. Dysregulation of Glutathione Homeostasis in Neurodegenerative Diseases. Nutrients. 2012;4(10):1399–440.
Riverón G, Martínez O, Gutiérrez R, Pandolfi A, Pupo J, Pereira N, Velazquez L. Oxidative damage and antioxidant enzymes in blood of patients with Spinocerebellar Ataxia Type 2. Rev Cub Genet Comunit. 2010;4(1):42–7.
Reed TT. Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med. 2011;51(7):1302–19.
Berni A, Meschini R, Filippi S, Palitti F, De Amicis A, Chessa L. l–Carnitine enhances resistance to oxidative stress by reducing DNA damage in Ataxia telangiectasia cells. Mutation Research. 2008;650:165–74.
Reichenbach J, Schubert R, Schindler D, Müller K, Böhles H, Zielen S. Elevated oxidative stress in patients with ataxia telangiectasia. Antioxid Redox Signal. 2002;4(3):465–9.
Bradley JL, Homayoun S, Hart PE, Schapira HV, Cooper JM. Role of oxidative damage in Friedreich's ataxia. Neurochem Res. 2004;29(3):561–7.
Baraibar MA, Liu L, Ahmed EK, Friguet B. Protein Oxidative Damage at the Crossroads of Cellular Senescence, Aging, and Age-Related Diseases. Oxid Med Cell Longev. 2012;2012:1-8.
Kamsler A, Daily D, Hochman A, Stern N, Shiloh Y, Rotman G, Barzilai A. Increased Oxidative Stress in Ataxia Telangiectasia Evidenced by Alterations in Redox State of Brains from Atm–deficient Mice. Cancer Res. 2001;61:1849–54.
Burak–Çimen MY. Free radical metabolism in human erythrocytes. Clin Chim Acta. 2008;390:1–11.
Novo E, Parola M. The role of redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis & Tissue Repair 2012;5(Suppl1):S4.
Aksoy Y, Sanal O, Metin A, Tezcan I, Ersoy F, Oğüş H, Ozer N. Antioxidant enzymes in red blood cells and lymphocytes of ataxia–telangiectasia patients. Turk J Pediatr. 2004;46(3):204–7.
Tozzi G, Nuccetelli M, Lo Bello M, Bernardini S, Bellincampi L, Ballerini S, et al. Antioxidant enzymes in blood of patients with Friedreich’s ataxia. Arch Dis Child. 2002;86(5):376–9.
Castellano–Higuera A, González–Reimers E, Alemán–Valls MR, Abreu–González P, Santolaria–Fernández F, Vega–Prieto de la M, et al. Cytokines and Lipid Peroxidation in Alcoholics UIT Chronic Hepatitis C Virus Iinfection. Alcohol & Alcoholism. 2008;43(2):137–42.