2014, Number 1
<< Back Next >>
Rev Cubana Invest Bioméd 2014; 33 (1)
Exogenous interleukin-12 prevents the decrease in myeloperoxidase activity of macrophages in gerbils with sporotrichosis
Flores-García A, Sánchez-Gutiérrez R, Velasco-Rodríguez R, Zambrano-Parra A, Ruiz-Bernés A, Paredes EC
Language: Spanish
References: 28
Page: 52-60
PDF size: 126.04 Kb.
ABSTRACT
Introduction: interleukin-12 is an immunoregulatory cytokine with multiple biologic functions, including macrophage activation. Myeloperoxidase is an enzyme that plays an important role in the antimicrobial function of activated phagocytes. In the presence of hydrogen peroxide, myeloperoxidase catalyzes chloride oxidation to produce hypochlorous acid, a powerful microbicidal agent.
Objective: determine the stimulating effect of murine recombinant interleukin-12 on myeloperoxidase activity in peritoneal macrophages of gerbils experimentally infected with
Sporothrix schenckii yeasts.
Methods: 500 ng murine recombinant interleukin-12 were administered intraperitoneally on a daily basis on 5 consecutive days to male gerbils. On the sixth day the gerbils were inoculated subcutaneously on the left posterior plantar pad with 6x106
S. schenckii yeasts. Seven days after infection, macrophages were obtained from the peritoneal cavity. Myeloperoxidase activity was determined by Kaplow's method and expressed as percentage of peritoneal macrophage activity. Results are expressed as the average percentage of myeloperoxidase activity ± standard deviation from 3 independent experiments. Statistical differences between groups were evaluated by
Student's t test. A value of p ‹ 0.05 was considered significant.
Results: administration of murine recombinant interleukin-12 to gerbils following infection with
S. schenckii significantly increased the myeloperoxidase activity of peritoneal macrophages (p = 0.0001) in comparison with healthy controls. Macrophages of untreated infected gerbils, however, showed significantly reduced myeloperoxidase activity in comparison with healthy controls (p= 0.001), suggesting poor macrophage activation.
Conclusions: in vivo administration of murine recombinant interleukin-12 before infection with
S. schenckii induces macrophage activation evidenced by an increase in myeloperoxidase activity, enhancing the organism's defense against that infectious agent via the myeloperoxidase-dependent oxidative system.
REFERENCES
Morris-Jones R. Sporotrichosis. Clin Dermatol. 2002;27:427-31.
Silva-Vergara ML, Maneira FR, De Oliveira RM, Santos CT, Etchebehere RM, Adad SJ. Multifocal sporotrichosis with meningeal involvement in a patient with AIDS. Med Mycol. 2005;43(2):187-90.
Carlos IZ, Sgarbi DB, Angluster J, Alviano CS, Silva CL. Detection of cellular immunity with the soluble antigen of the fungus Sporothrix schenckii in the systemic form of the disease. Mycopathologia. 1992;117(3):139-44.
Shirashi A, Nakagaki K, Arait T. Role of cell-mediated immunity in the resistance to experimental sporotrichosis. Mycopathologia. 1992;120(1):15-21.
Carlos IZ, Sassá MF, Sgarbi DBG, Placeres MCP, Maia DC. Current research on the immune response to experimental Sporotrichosis. Mycopathologia. 2009;168:1-10.
Tachibana T, Matsuyama T, Mitsuyama E. Involvement of CD4+ T cells and macrophages in acquired protection against infection with Sporothrix schenckii in mice. Med Mycol. 1999;37:397-404.
Fernandez KSS, Coelho AL, Lopez-Becerra LM, Barja-Fidalgo C. Virulence of Sporothrix schenckii conidia and yeast cells, and their susceptibility to nitric oxide. Immunology. 2000;101:563-9.
Kajiwara H, Saito M, Ohga S, Uenotsuchi T, Yoshida A. Impaired host defense against Sporothrix schenckii in mice with chronic granulomatous disease. Infect Immun. 2004;72(9):5073-9.
Trinchiery G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003;3(2):133-46.
O'Garra A, Murphy KM. From IL-10 to IL-12: how pathogens and their products stimulate APCs to induce TH1 development. Nat Immunol. 2009;10(9):929-32.
Gattoni A, Parlato A, Vangieri B, Bresciani M, Derna R. Interferon-gamma: biologic functions and HCV therapy (type I/II) (1 of 2 parts). Clin Ter. 2006;157(4):377-86.
Puddu P, Fantuzzi L, Borghi P, Varano B, Rainaldi G, Guillemard E, et al. IL-12 induces IFN-gamma expression and secretion in mouse peritoneal macrophages. J Immunol. 1997;159(7):3490-7.
Klebanoff SJ. Myeloperoxidase: friend and foe. J Leukoc Biol. 2005;77(5):598- 625.
Hansson M, Olsson I, Nauseef WM. Biosynthesis, processing, and sorting of human myeloperoxidase. Arch Biochem Biophys. 2006;445:214-24.
Marcinkiewicz J. Neutrophil chloramines: missing links between innate and acquired immunity. Immunol Today. 1997;18(12):577-80.
Aratani Y, Koyama H, Nyui S, Suzuki K, Kura F, Maeda N. Severe impairment in early host defense against Candida albicans in mice deficient in myeloperoxidase. Infect Immun. 1999;67(4):1828-36.
Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y, Suzuki K, et al. Differential host susceptibility to pulmonary infections with bacteria and fungi in mice deficient in myeloperoxidase. J Infect Dis. 2000;182(4):1276-9.
Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y, Suzuki K, et al. Relative contributions of myeloperoxidase and NADPH-oxidase to the early host defense against pulmonary infections with Candida albicans and Aspergillus fumigatus. Med Mycol. 2002;40(6):557-63.
Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y, Ishida-Okawara A, et al. Contribution of the myeloperoxidase-dependent oxidative system to host defense against Cryptococcus neoformans. J Med Microbiol. 2006;55(9):1291-9.
Flores-García A, Velarde-Félix JS, Aguilar-García P, Sánchez-Gutiérrez R, Flores- García EB, Cancino Marentes ME, et al. Interleucina-12 aumenta la actividad de la mieloperoxidasa de macrófagos en gérbiles infectados experimentalmente con Sporothrix schenckii. Rev Fuente. 2011;8:95-101.
Norma Oficial Mexicana NOM-062-ZOO-1999, especificaciones técnicas para la producción, cuidado y manejo de animales de laboratorio. [ Citado: 2 de junio de 2013]. Disponible en: http://www.fmvz.unam.mx/fmvz/principal/archivos/062ZOO.PDF
Ramos-Zepeda R, Gonzalez-Mendoza A. Metabolic activity of phagocytes in experimental sporotrichosis. Mycopathologia. 1986;93(2):109-12.
Magee DM, Cox RA. Interleukin-12 regulation of host defenses against Coccidioides immitis. Infect Immun. 1996;64(9):3609-13.
Zhoou P, Sieve MC, Bennett J, Kwon-Chung KJ, Tewari RP. IL-12 prevents mortality in mice infected with Histoplasma capsulatum through induction of IFN-. J Immunol. 1995;155:785-95.
Kawakami K, Tohyama M, Xie Q, Saito A. IL-12 protects mice against pulmonary and disseminated infection caused by Cryptococcus neoformans. Clin Exp Immunol. 1996;104:208-14.
Murray HW. Gamma interferon, cytokine-induced macrophage activation, and antimicrobial host defense. In vitro, in animal models, and in humans. Diagn Microbiol Infect Dis. 1990;13(5):411-21.
Schoroeder K, Hertzog PJ, Ravasi T, Hume DA. Interferon- an overview of signals, mechanisms and functions. J Leukoc Biol. 2004;75:163-89.
Diamond RD, Clark RA, Haudenschild CC. Damage to Candida albicans hyphae and pseudohyphae by the myeloperoxidase system and oxidative products of neutrophil metabolism in vitro. J Clin Invest. 1980;66(5):908-17.