2003, Number 1
<< Back Next >>
Rev Mex Ing Biomed 2003; 24 (1)
Dielectrophoretic field-fractionation of Rouleaux formed of human erythrocytes: A feasibility study
Ramírez A, Zehe A, Starostenko O
Language: English
References: 35
Page: 14-22
PDF size: 285.13 Kb.
ABSTRACT
Red blood cell (RBC) aggregation, and specifically linear Rouleaux formation of human erythrocytes affects the rheology of microcirculation and has been widely studied in order to quantify flow abnormality in pathological conditions. Rouleaux form through side-by-side adhesion of a considerable number of erythrocytes and may reach a roll length of 50 µm and more. This compares to the 2.2 µm in thickness of common RBC’s. Increased aggregation of RBC’s may be an important factor in the development of vascular diseases and microcirculation impairment. Dielectric properties of cell suspensions or of undiluted whole blood are strongly related i.e. to the geometrical structure of particles. Electrophoretic measurements or Rouleaux in various suspending media have the potential of size-characterization and spatial separation of cell subpopulations. In the present paper we show, that the electrophoretic force on RBC aggregations of different size, exposed to an electric field of variable frequency, provides a means for a spatial separation and sorting of Rouleaux with different “stack number” of aggregated erythrocytes. In particular is the field-flow-fractionation technique a suitable tool, where the differential positioning of particles within a suspension flow velocity profile is established by the action of corresponding dielectrophoretic forces.
REFERENCES
Foresto P, D’Arrigo M, Carreras L, Cuezzo RE, Valverde J, Rasia R. Evaluation of red blood cell aggregations in diabetes by computerized image analysis. Medicina, 2000; 60: 570-572.
Baumier H, Neu B, Donath E, Kiesewetter H. Basic phenomena of blood cell rouleaux formation. Biorheology 1999; 36(5-6): 439-442.
Barshtein G, WajnBlum D, Yedgar S. Kinetics of linear rouleaux formation studied by visual monitoring of red cell dynamic organization. Biophys J 2000; 78(5): 2470-2474.
Bertoluzzo SM, Bollini A, Rasia M, Raynal A. Kinetic model for erythrocyte aggregation. Blood Cells Mol Dis 1999; 25(5-6): 339-349.
Riha P, Liao F, Stoltz JF. The effect of rouleaux formation on blood coagulation. Clin Hemorrheol Microcorc 1997; 17(4): 341-346.
Chien S, Sung LA, Kim S, Burke AM, Usami S. Determination of aggregation force in rouleaux by fluid mechanical technique. Microvasc Res 1977; 13(3): 327-333.
Pribush A, Meiselman HJ, Meyerstein D, Meyerstein N. Dielectric approach to investigation of erythrocyte aggregation. II. Kinetics of erythrocyte aggregation-disaggregation in quiescent and flowing blood. Biorheology 2000; 37(5-6): 429-441.
Ditenfass L. Experiment on “Discovery” STS 51-C: aggregation of red cells and thrombocytes in heart disease, hyperlipidaemia and other conditions. Adv Space Res 1989; 9(11): 65-69.
Baumler H, Neu B, Mitlohner R, Georgieva R, Meiselman HJ, Kiesewetter H. Electrophoretic and aggregation behavior of bovine, horse and human red blood cells in plasma and in polymer solutions. Biorheology 2001; 38(1): 39-51.
Baumann M. Dynamics of Oscillating Erythrocyte Doublets after Electrofusion. Biophys J 1999; 77(5): 2602-2611.
Priezzhev AV, Forsov NN, Vyshlova MG, Lademann J, Richter H, Kiesewetter H, et al. Assessment of erythrocyte aggregation in whole blood samples by light backscattering: clinical applications. SPIE Proceedings, 1999; 3599.
Forsdyke DR, Ford PM. Segregation into separated rouleaux of erythrocytes from different species. Evidence against the agglomerin hypothesis of rouleaux formation. Biochem J 1983; 214: 257-260.
Chelidze T. Dielectric Spectroscopy of Blood: Experiment and Theory, Proc. 1st Int Conf on Diel. Spectrocopy in phys oil and oil Appl, (Jerusalem), 2001: 57.
Irimajiri A, Ando M, Matsuoka R, Ichinowatari T, Takeuchi S. Dielectric monitoring of rouleaux formation in human whole blood: a feasibility study. Biochim Biophys Acta 1996; 1290(3): 207-209.
Markx GH, Dyda PA, Pethig R. Dielectrophoretic separation of bacteria using a conductivity gradient. J Biotechnol 1996; 51: 175-180.
Morgan H, Highes MP, Green NG. Separation of Submicron Bioparticles by Dielectrophoresis. Biophys J 1999; 77: 516.
Hughes MP, Morgan H, Rixon FJ, Burt JPH, Pethig R. Manipulation of herpes simplex virus type 1 by dielectrophoresis. Biochim Biophys Acta 1998; 1425: 119-126.
Talary M, Mills KI, Hoy T, Burnett AK, Pethig R. Dielectrophoretic separation and enrichment of CD34+ cell subpopulations from bone marrow and peripheral blood stem cells. Med Biol Engl Comp 1995; 33: 235-237.
Becker FF, Wang XB, Huang Y, Pethig R, Vykoukal J, Gascoyne PCR. The removal of human leukemia cell from blood using interdigitated microelectrodes. J Phys D Appl Phys 1994; 27: 2659-2662.
Markx GH, Pethig R. Dielectrophoretic separation of cells: continuous separation. Biotechnol Bioeng 1995; 45: 337-343.
Wang XB, Vykoukal J, Becker FF, Gascoyne PRC. Separation of polystyrene microbeads using dielectrophoretic/gravitational field-flow fractionation. Biophys J 1998; 74: 2689-2701.
Green NG, Morgan H. Dielectrophoretic investigations of submicrometre latex spheres. J Phys D Appl Phys 1997; 30: 2626-2633.
Washizu M, Kurosawa O, Arai I, Suzuki S, Shimamoto N. Applications of electrostatic stretch-and-positioning of DNA. IEEE Trans Ind Appl 1995; 31: 447-456.
Asbury CL, van den Engh G. Trapping of DNA in non-uniform oscillating electric fields. Biophys J 1998; 74: 1024-1030.
Voldman J, Braff RA, Toner M, Gray ML, Schmidt MA. Holding Forces of Single-Particle Dielectrophoresis Traps. Biophys J 2001; 80(1): 531-541.
Morgan H, Green NG, Huges MP, Tan TC. Large-area traveling wave dielectrophoresis particle separator. J Micromech Microeng 1997; 7: 65-70.
Jones TB. Electromechanics of particles. Cambridge University Press (Cambridge), 1995.
Ramos A, Morgan H, Green NG, Castellanos A. AC electrokinetics: a review of forces in microelectrode structures. J Phys D Appl Phys 1998; 31: 2338-2353.
Talary MS, Burt JPH, Tame JA, Pethig R. Electromanipulation and separation of cells using traveling electric fields. J Phys D Appl Phys 1996; 29: 2198-2203.
Pauly H, Suwan HP. Dielectric properties and ion mobility in erythrocyte. Biophys J 1966; 6: 621-39.
Bonincontro A, Gimsa J, Risuleo G, Rosa V. Critical analysis of the impedance method for the evaluation of permittivity and conductivity of the plasamembrane. Biologitscheski Membrany 2000; 17: 102-106.
Konomenko VL, Ilyina TA. Dielectrodeformations of erythrocyte: Analysis of the ellipsoidal shear model. Membr Cell Biol 2001; 14(4): 537-551.
Morgan H, Green NG. Dielectrophoretic manipulation of rod-shaped viral particles. J Electrostatics 1997; 42: 279-293.
Gimsa J, Wachner D. A polarization model overcoming the geometric restrictions of the Laplace solution for spheroidal cell. Biophys J 1999; 77: 1316-1326.
Miller RD, Jones TB. Electro orientation of ellipsoidal erythrocytes. Biophys J 1993; 64: 1588-95.