2014, Number 5
<< Back Next >>
Rev Med Inst Mex Seguro Soc 2014; 52 (5)
Genomics in medicine
Ruiz Esparza-Garrido R, Velázquez-Flores MÄ, Arenas- Aranda DJ, Salamanca-Gómez F
Language: Spanish
References: 44
Page: 566-573
PDF size: 336.98 Kb.
ABSTRACT
The development of new fi elds of study in genetics, as the omic scienc
es (transcriptomics, proteomics, metabolomics), has allowed
the study of the regulation and expression of genomes. Therefore,
nowadays it is possible to study global alterations —in the whole
genome— and their effect at the protein and metabolic levels.
Importantly, this new way of studying genetics has opened new
areas of knowledge, and new cellular mechanisms that regulate
the functioning of biological systems have been elucidated. In
the clinical fi eld, in the last years new molecular tools have been
implemented. These tools are favorable to a better classification,
diagnosis and prognosis of several human diseases. Additionally,
in some cases best treatments, which improve the quality of life of
patients, have been established. Due to the previous assertion, it
is important to review and divulge changes in the study of genetics
as a result of the development of the omic sciences, which is the
aim of this review.
REFERENCES
Encarnación GS, González V, Santamaría RI, Bustos P, Acosta JL, Fernández JL et al. Genómica y genómica funcional en microbiología. Rev Latinoam Microbiol. 2006;48(2):131-9.
Baker M. Genomics: Genomes in three dimensions. Nature. 2011;470:289-94.
Cho WC. Contribution of oncoproteomics to cancer biomarker discovery. Mol Cancer. 2007;6:1-13.
Metzker ML. Sequencing technologies — the next generation. Nature. 2010;11:31-46.
Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337:1190-5.
Danielsson K, Mun LJ, Lordemann A, Mao J, Lin CH. Next-generation sequencing applied to rare diseases genomics. Expert Rev Mol Diagn. 2014;4:469-87.
US Department of Health and Human Services. NIH News National Institutes of Health. International Consortium Announces the 1000 Genomes Project. Bethesda: National Human Genome Research Institutes, 2008.
Graudens E, Boulanger V, Mollard C, Mariage-Samson R, Barlet X, Grémy G, et al. Deciphering cellular states of innate tumor drug responses. Genome Biol. 2006;7:R19.
Nagasaki K, Miki Y. Gene expression profi ling of breast cancer. Breast Cancer. 2006;13(1):2-7.
Hu N, Su H, Li WJ, Giffen C, Goldstein AM, Hu Y, et al. Allelotyping of esophageal squamous-cell carcinoma on chromosome 13 defi nes deletions related to family history. Genes Chromosomes Cancer. 2005;44(3):271-8.
Van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347(25):1999-2009.
Pusztai L, Broglio K, Andre F, Symmans WF, Hess KR, Hortobagyi GN. Effect of molecular disease subsets on disease-free survival in randomized adjuvant chemotherapy trials for estrogen receptor-positive breast cancer. J Clin Oncol. 2008;26(28):4679-83.
Abramovitz M, Leyland-Jones B. A systems approach to clinical oncology: focus on breast cancer. Proteome Sci. 2006;4:4-5.
Fillies T, Werkmeister R, van Diest PJ, Brandt B, Joos U, Buerger H. HIF1-alpha overexpression indicates a good prognosis in early stage squamous cell carcinomas of the oral fl oor. BMC Cancer. 2005;215:84.
Shashkin PN, Jain N, Miller YI, Rissing BA, Huo Y, Keller SR, et al. Insulin and glucose play a role in foam cell formation and function. Cardiovasc Diabetol. 2006;20:5-13.
Tan AC, Naiman DQ, Xu L, Winslow RL, Geman D. Simple decision rules for classifying human cancers from gene expression profi les. Bioinformatics. 2005;21(20):3896-904.
Minafra L, Bravatà V, Forte GI, Cammarata FP, Gilardi MC, Messa C. Gene expression profi ling of epithelial- mesenchymal transition in primary breast cancer cell culture. Anticancer Res. 2014;34(5):2173-83.
Fotinos A, Nagarajan N, Martins AS, Fritz DT, Garsetti D, Lee AT, et al. Bone Morphogenetic Proteinfocused Strategies to Induce Cytotoxicity in Lung Cancer Cells. Anticancer Res. 2014;34(5):2095-104.
Liu W, Li L, Li W. Gene co-expression analysis identifi es common modules related to prognosis and drug resistance in cancer cell lines. Int J Cancer. 2014;26 [Epub ahead of print].
Claerhout S, Lim JY, Choi W, Park YY, Kim K, Kim SB. Gene expression signature analysis identifi es vorinostat as a candidate therapy for gastric cancer. PLoS One. 2011;6(9):e24662.
Barallobre-Barreiro J, Chung YL, Mayr M. Proteomics and metabolomics for mechanistic insights and biomarker discovery in cardiovascular disease. Rev Esp Cardiol. 2013;66(8):657-61.
Kerschgens J, Egener-Kuhn T, Mermod N. Proteinbinding microarrays: probing disease markers at the interface of proteomics and genomics. Trends Mol Med. 2009;15(8):352-8.
Kacerovsky M, Tambor V, Lenco J, Tosner J. Proteomics and biomarkers for detection of ovarian cancer. Ceska Gynekol. 2009;74(3):163-70.
Scrivo R, Casadei L, Valerio M, Priori R, Valesini G, Manetti C. Metabolomics approach in allergic and rheumatic diseases. Curr Allergy Asthma Rep. 2014;14(6):445.
Dessi A, Corsello G, Stronati M, Gazzolo D, Caboni P, Carboni R, et al. New diagnostic possibilities in systemic neonatal infections: metabolomics. Early Hum Dev. 2014;90S1:S19-S21.
Nikolic SB, Sharman JE, Adams MJ, Edwards LM. Metabolomics in hypertension. J Hypertens. 2014;26 [Epub ahead of print].
Kaur P, Rizk N, Ibrahim S, Luo Y, Younes N, Perry B, et al. Quantitative metabolomic and lipidomic profi ling reveals aberrant amino acid metabolism in type 2 diabetes. Mol Biosyst. 9(2):307-17.
Mo ML, Palsson BO. Understanding human metabolic physiology: a genome-to-systems approach. Trends Biotechnol. 2009;27:37-44.
Jordan JD, Landau EM, Lyengar R. Signaling networks: the origins of cellular multitasking. Cell. 2000;103:193-200.
Davidson EH. Emerging properties of animal gene regulatory networks. Nature. 2010;468:911-20.
Babu MM, Janga SC, de Santiago I, Pombo A. Eukaryotic gene regulation in three dimensions and its impact on genome evolution. Curr Opin Genet Dev. 2008;18:571-82.
Shahrezaei V, Swain PS. The stochastic nature of biochemical networks. Curr Opin Biotechnol. 2008;19:369-74.
Ideker T, Sharan R. Protein networks in disease. Genome Res. 2008;18:644-52.
Hanahan D, Weinberg R. The hallmarks of cancer. The next generation. Cell. 2011;144:646-74.
Kreeger PK, Lauffenburger DA. Cancer systems biology: a network modeling perspective. Carcinogenesis. 2010;31:2-8.
Iadevaia S, Lu Y, Morales FC, Mills GB, Ram PT. Identifi cation of optimal drug combinations targeting cellular networks: integrating phospho-proteomics and computational network analysis. Cancer Res. 2010:70:6704-14.
Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12:56-68.
Yildirim MA, Goh KI, Cusick ME, Barabasi AL, Vidal M. Drug-target network. Nat Biotechnol. 2017;25:1119-26.
Alon U. Network motifs: theory and experimental approaches. Nat Rev Genet. 2007;8:450-61.
Shlomi T, Eisenberg Y, Sharan R, Ruppin E. A genome- scale computational study of the interplay between transcriptional regulation and metabolism. Mol Syst Biol. 2007;3:101.
Ma’ayan A, Jenkins SL, Neves S, Hasseldine A, Grace E, Dubin-Thaler R, et al. Formation of regulatory patterns during signal propagation in a Mammalian cellular network. Science. 2005; 309:1078-83.
Locasale JW, Vander Heiden MG, Cantley LC. Rewiring of glycolysis in cancer cell metabolism. Cell Cycle. 2010;9:4253.
Vander Heiden MG. Locasale JW, Swanson KD, Sharfi H, Heffron GJ, Amador-Noguez D, et al. Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science. 2010;329:1492-9.
O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activated. Akt Cancer Res. 2006;66:1500-8.