2013, Number 3
<< Back Next >>
Med Cutan Iber Lat Am 2013; 41 (3)
Practical applications of aquaporin-3 in skin hydrodynamics
Leal B, Fachín R, Aular L, Gómez F, Bosnjak M
Language: Spanish
References: 30
Page: 111-117
PDF size: 626.83 Kb.
ABSTRACT
Every living organism is mainly composed of water. Most biological membranes exhibit an increased permeability to water, which allows intra- and extracellular
compartments to maintain the isotonicity required for intracellular homeostasis, although underlying mechanisms for this are still subject of
debate. Water can cross the membranes through simple diffusion or by aqueous pores. While water transport was assumed to occur exclusively by the
first mechanism, pioneer studies conducted through the sixties revealed otherwise, ultimately leading to the discovery by biologist Peter Agre of water
channels or pores called Aquaporins. Aquaporins are a family of water-transporter homologous proteins expressed by epithelial, endothelial and other
types of cells in mammals, which allowed a better understanding of the mechanisms used by the cell to control the flow of water through the membrane,
and therefore, the regulation of its inner osmolarity. Aquaporin-3 (AQP3) is particularly important for its potential role in the treatment of skin conditions,
since it may transport small organic molecules other than water, like glycerin or urea and may be stimulated selectively. This paper was intended to summarize
the current knowledge on Aquaporins, with a particular emphasis on AQP3, and to delineate its possible future roles in Dermatology.
REFERENCES
Verkman A. Aquaporins at a glance. J Cell Sci 2011; 124: 2107-12.
Kozono D, Ding X, Iwasaki I, Meng G, Kamagata Y, Agre P, Kitagawa Y. Functional Expression and Characterization of an Archaeal Aquaporin. J Biol Chem 2003; 278: 10649-56.
Agre P, Preston G, Smith B, Jung J, Raina S, Moon C et al. Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol 1993; 265: F463-76.
Elias P. Impaired Stratum Corneum Hydration in Mice Lacking Epidermal Water Channel Aquaporin-3. Invest Dermatol 1983; 80: 44-9.
Matsuzaki T, Hata H, Ozawa H, Takata K. Immunohistochemical localization of the aquaporins AQP1, AQP3, AQP4, and AQP5 in the mouse respiratory system. Acta Histochem Cytochem 2009; 42: 159-69.
Nielsen S, Frokiaer G, Marples D, Kwon T, Agre P, Knepper M. Aquaporins in the Kidney: From Molecules to Medicine. Physiol Rev 2002; 82: 205-44.
Yool A, Campbell E. Structure, function and translational relevance of aquaporin dual water and ion channels. Mol Aspects Med 2012; 33: 553-61.
Nielsen S, Smith B, Christensen E, Knepper M, Agre P. CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. J Cel Biol 1993; 120: 371-83.
Maunsbach A, Marples D, Chin E, Ning G, Bondy C, Agre P, Nielsen S. Aquaporin- 1 water channel expression in human kidney. J Am Soc Nephrol 1997; 8: 1-14.
Nielsen S, Agre P. The aquaporin family of water channels in kidney. Kidney International 1995; 48: 1057-68.
Heckmann K. Theorie der single file diffusion II. Phys Chem 1965; 46: 1-25.
Hill A. Osmotic flow in Membrane Pores of Molecular Size. J Membr Biol 1994; 137: 197-203.
Hernández C, Gutiérrez A, Ruíz V, González E, Echevarría M, Whittembury G. Canales de Agua (Aquaporinas) y Riñón. AVFT 2002; 21: 8-15.
Gonen T, Walz T. The structure of aquaporins. Q Rev Biophys 2006; 9: 361-96.
Cortés-Telles A, Sada-Ovalle I, Torre- Bouscoulet L. Acuaporinas en el sistema respiratorio. Neumol Cir Torax 2012; 71: 29-35.
Wang Z, Schey K. Aquaporin-0 Interacts with the FERM Domain of Ezrin/Radixin/ Moesin Proteins in the Ocular Lens. Invest Ophthalmol Vis Sci 2011; 52: 5079-87.
Coppo J. Acuaporinas. Rev Vet 2008; 19: 167-78.
Best C, Taylor N. 2008. Bases Fisiológicas de la Práctica Médica. 14ª edición. Caracas: Panamericana.
Zhu N, Feng X, He C, Gao H, Yang L, Ma Q et al. Defective macrophage function in aquaporin-3 deficiency. FASEB J 2011; 25: 4233-9.
Schrader A, Siefken W, Kueper T, Brei - tenbach U, Gatermann C, Sperling G et al. Effects of Glyceryl Glucoside on AQP3 Expression, Barrier Function and Hydration of Human Skin. Skin Pharmacol Physiol 2012; 25:192-9.
Yeung C, Cooper T. Aquaporin AQP11 in the testis: molecular identity and association with the processing of residual cytoplasm of elongated spermatids. Reproduction 2010; 139: 209-16.
Itoh T, Rai T, Kuwahara M, Ko S, Uchida S, Sasaki S, Ishibashi K. Identification of a novel aquaporin, AQP12, expressed in pancreatic acinar cells. Biochem Biophys Res Commun 2005; 330: 832-8.
Denda M, Hori J, Koyama J, Yoshida S, Nanba R, Takahashi M et al. Stratum corneum sphingolipids and free amino acids in experimentally-induced scaly skin. Arch Derm Res 1992; 284: 363-7.
Hara-Chikuma M, Verkman A. Roles of Aquaporin-3 in the Epidermis. J Invest Dermatol 2008; 128: 2145-51.
The Wikimedia Foundation Inc. (2012). Aquaporin. [Documento en línea]. Disponible: http://en.wikipedia.org/wiki/Aquaporin
Heymann J, Engel A. Aquaporins: Phylogeny, Structure, and Physiology of Water Channels. Physiology 1999; 14: 187-93.
Boury-Jamot M, Daraspe J, Bonté F, Perrier E, Schnebert S, Dumas M, Verbavatz J. Skin aquaporins: function in hydration, wound healing, and skin epidermis homeostasis. Handb Exp Pharmacol 2009; 190: 205-17.
Boury-Jamot M, Sougrat R, Tailhardat M, Le Varlet B, Bonté F, Dumas M, Verbavatz J. Expression and function of aquaporins in human skin: is aquaporin-3 just a glycerol transporter? Biochim Biophys Acta 2006; 1758: 1034-42.
Cao C, Wan S, Jiang Q, Amaral A, Lu S, Hu G et al. All-trans retinoic acid attenuates ultraviolet radiation-induced downregulation of aquaporin-3 and water permeability in human keratinocytes. J Cell Physiol 2008; 215:506–16.
Dumas M, Sadick N, Noblesse E, Juan M, Lachmann-Weber N, Boury-Jamot M et al. Hydrating skin by stimulating biosynthesis of aquaporins. J Drugs Dermatol 2007; 6: 20-4.