2004, Number 2
<< Back Next >>
Rev Mex Ing Biomed 2004; 25 (2)
Design optimization of femoral component of a non-conventional blocked hip prosthesis
Domínguez HVM, Rico MG, Urriolagoitia CG
Language: Spanish
References: 35
Page: 144-159
PDF size: 353.25 Kb.
ABSTRACT
Non-conventional prosthesis (NCP) is employed for proximal end of femur reconstruction after resection of bony tumors of the hip. We developed a novel design of NCP, which main limitation is its lack of stability. In this work we determined design parameters that improve its stability, by means of finite element analysis. The model geometry was established by means of tomographic scans practiced to a cadaveric femur. It was developed seven cases. In the first two cases position of pins with respect to osteotomy site is determined. In the third case length of stem is analyzed. In the fifth case we studied the effect of external ring, meanwhile the sixth case analyzed the effect of restore abductor lever, and the last one studies three materials commonly used for implants. The design obtained presents proximal pin 50 mm from osteotomy, distal pin from 25 mm from proximal one; stem with a length of 30 cm, upper end of femur with the original design; with external ring, and 100% of abductor lever restoration; finaly, we chose stainless steel for this implant.
REFERENCES
Moore AT, Bohlman HR. Metal hip joint. A case report. J Bone Joint Surg 1943; 25A: 688.
Lewis M, Chekofsky KM. Proximal femur replacement for neoplasic disease. Clin Orthop 1982; 171: 72-79.
Johnsson R, Carlsson A, Kirsch K, Moritz U, Zetterström R, Persson BM. Function following mega total hip arthroplasty compared with total hip arthroplasty and healthy matched controls. Clin Orthop 1985; 192: 159-167.
Johnson ME, Mankin HJ. Reconstruction after resection of tumors involving the proximal femur. Orthop Clin N Am 1991; 22(1): 87-103.
Sim FH, Frassica FJ, Chao EYS. Orthopaedic management using new devices and prostheses. Clin Orthop 1995; 312: 160-172.
Veth R, Nielsen H, Oldhof J. Megaprostheses in the treatment of primary malignant and metastatic tumors in hip region. J Surg Oncol 1989; 40: 214-218.
Malkani AL, Settecerri JJ, Sim FJ, Chao EYS, Wallrichs SL. Long term results of proximal femoral replacement for non-neoplasic disorders. J Bone Joint Surg 1995; 77-B(3): 351-356.
Haentjens P, De Boeck H, Opdecam P. Proximal femoral replacement prosthesis for salvage of failed hip arthroplasty. Complication in a 2-11 follow-up study in 19 elderly patients. Acta Orthop Scand 1996; 67(1): 37-42.
Gebhart M, Mainil-Varlet P, Aerens C. Functional evaluation of megaprosthesis replacing the proximal femur. Acta Orthop Belgica Suppl 1993; 59: 47-51.
Newington DP, Bannister GC, Fordyce M. Primary total hip replacement in patients over 80 years of age. J Bone Joint Surg 1990; 72-B: 450-452.
Coventry MB. The history of joint replacement arthroplasty. En Morrey BF. Joint replacement arthroplasty. Churchill Livingstone, Rochester MN, 1991.
Zehr RJ, Enneking WF, Scarborough MT. Allograft-Prosthesis composite versus megaprosthesis in proximal femoral reconstruction. Clin Orthop 1996; 322: 207-223.
Kohles SS, Markel MD, Rock MG, Chao EYS, Vanderby R. Fixation of femoral allograft/prosthesis composites after 25%, 50% and 75% resection. Med Eng Phys 1996; 18(2): 115-121.
Donati D, Giacomini S, Gozzi E, Mercuri M. Proximal femur reconstruction by an allograft prosthesis composite. Clin Orthop 2002; (394): 192-200.
Rico-Martínez G, Linares-González LM, Domínguez-Hernández VM. Prótesis tumoral no convencional bloqueada para cadera. Rev Mex Ortop Traum 1997; 11(6): 385-388.
Domínguez-Hernández VM, Carbajal-Romero MF, Rico-Martínez G, Urriolagoitia-Calderón G. Análisis de una prótesis no convencional bloqueada para cadera mediante el Método del Elemento Finito. Rev Mex Ing Biomed. En prensa.
Morom SA, Linden MJ. Computer aided stress analysis of long bones utilizing computed tomography. J Biomech 1990; 23(5): 399-404.
Keyak JH, Meagher JM, Skinner HB, Mote CD Jr. Automated three-dimensional finite element modelling of bone: a new method. J Biomed Eng 1990; 12: 389-397.
Brekelmans WAM, Poort HW, Slooff TJ. A new method to analyze the mechanical behavior of skeletal parts. Acta Orthop Scand 1972; 43: 301-317.
Rohlmann A, Bergmann G, Koelbel R. The relevance of stress computation in the femur with and without endoprosthesis. en Gallagher RH, Simon BR, Johnson PC, Gross JF: Finite Elements in Biomechanics, Editorial John Wiley & Sons, 1982: 361-377.
Cheal EJ, Spector M, Hayes WC. Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty. J Orthop Res 1992; 10: 405-422.
Keyak JH, Fourkas MG, Meagher JM, Skinner HB. Validation of an automated method of three-dimensional finite element modelling of bone. J Biomed Eng 1993; 15: 505-509.
Kang YK, Park HC, Youm Y, Lee IK, Ahn MH, Ihn JC. Three dimensional shape reconstruction and finite element analysis of femur before and after the cementless type of total hip replacement. J Biomed Eng 1993; 15: 497-504.
Taylor ME, Tanner KE, Freeman MAR, Yettram AL. Cancellous bone stresses surrounding the femoral component of a hip prosthesis: an elastic-plastic finite element analysis. Med Eng Phys 1995; 17(7): 544-550.
Mann KA, Bartel DL, Wright TM, Burstein AH. Coulomb frictional interfaces in modeling cemented total hip replacements: a more realistic model. J Biomech 1995; 28(9): 1067-1078.
Taylor ME, Tanner KE, Freeman MAR, Yettram AL. Stress and strain distribution within the intact femur; compression of bending? Med Eng Phys 1996; 18(2): 122-131.
Kalidindi SR, Ahmad P. A numerical investigation of the mechanics of swelling-type intramedullary hip implants. J Biomech Eng 1997; 119: 241-247.
Wang CJ, Yettram AL, Yao MS, Procter P. Finite element analysis of a Gamma nail within a fractured femur. Med Eng Phys 1998; 20: 677-683.
Rotem A. Effect of implant material properties on the performance of a hip joint replacement. J Med Eng Tech 1994; 18(6): 208-217.
Huiskes R, Janssen JD, Slooff TJ. A detailed comparison of experimental and theoretical stress-analyses of a human femur. en Cowin: Mechanical Properties of Bone, 45: 211-234, American Society of Mechanical Engineers, Nueva York, 1981.
Mann KA, Bartel DL, Ayers DC. Influence of stem geometry on mechanics of cemented femoral hip components with proximal bond. Transactions of the 43rd Annual Meeting of the Orthopaedic Research Society, pp 840, 1997.
Van Rietbergen B, Müller R, Ulrich D, Rüegsegger P, Huiskes R. Quantitative assessment of tissue loading in proximal femur, using a full scale microstructural FE-model. Transactions of the 43rd Annual Meeting of the Orthopaedic Research Society, 1997: 62.
McNamara BP, Cristofolini L, Toni A, Taylor D. Relationship between bone-prosthesis bonding and load transfer in total hip reconstruction. J Biomech 1997; 30(6): 621-630.
Namba RS, Keyak JH, Kim AS, Vu LP, Skinner HB. Cementless implant composition and femoral stress. Clin Orthop 1998; 347: 261-267.
Stolk J, Verdonschot N, Huiskes R. Hip-joint and abductor-muscle forces adequately represent in vivo loading of a cemented total hip reconstruction. J Biomech 2001; 34: 917-926.