2012, Number 2
<< Back Next >>
RCAN 2012; 22 (2)
Consumo elevado de fructosa y su posible influencia sobre el metabolismo lipídico
Gómez ÁAM, Cardellá RL, Pita RG, Hernández FM
Language: Spanish
References: 43
Page: 287-300
PDF size: 301.39 Kb.
ABSTRACT
Introduction: Fructose consumption has increased in recent years after the use as sweetener of corn syrup containing highq uantities of this monosaccharide.
Objective: To analyze the current state of scientific knowledge regarding the molecular basis of adverse effect
for human health of lipogenesis stimulated by
increased (› 50 g.day
-1) fructose consumption.
Development: Advancing the hypothesis that elevated fructose consumption stimulates lipogenesis, an explanation is provided for the adverse effects of this event for human health, in view of the disorders brought about in blood
lipid disorders, obesity, metabolic syndrome, insulin resistance, and diabetes. Visceral adiposity causes release of free fatty acids to portal blood that reach the liver directly, event regarded as of great significance in the
development of insulin resistance and metabolic syndrome. There is a complex network of intracellular signaling pathways which, after stimulation, causes as common effect resistance to insulin action. Several lipids metabolites
might act as stimuli of these pathways. Links are established between signaling pathways related with metabolic homeostasis (nutrient availability) and inflammation. Fatty acids are among the candidate nutrients acting as stimuli in both pathways.
Conclusions: There are multiple intracellular signaling pathways that can become activated as a consequence of metabolic adaptations due to elevated fructose consumption, particularly in the lipid
metabolism, among them, activation of inflammatory pathways. The aforementioned acquires an increasingly relevant significance for the pathogenesis of non-communicable,
chronic diseases.
REFERENCES
Johnson RJ, Perez Pozo SE, Sautin YY, Manitius J, Sánchez Lozada LG, Feig DI. Could excessive fructose intake and uric acid cause type 2 Diabetes? Endocr Rev 2008;30: 96-116.
Alfonzo Guerra JP. Obesidad: Epidemia del siglo XXI. Primera Edición. Editorial Científico-Técnica. La Habana: 2008.
Nakagawa T, Tuttle KR, Short RA, Johnson RJ. Hypothesis: fructoseinduced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome. Nat Clin Pract Nephrol 2005;1:80-6.
Teff KL, Grudziak J, Townsend RR. Endocrine and metabolic effects of consuming fructose- and glucosesweetened beverages with meals in obese men and women: Influence of insulin resistance on plasma triglyceride responses. J Clin Endocrinol Metabol 2009; 94: 1562-9.
Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova A, et al. A causal role for uric acid in fructoseinduced metabolic syndrome. Am J Physiol [Renal Physiol] 2006;290:F625- F631.
Choi HK, Curhan G. Soft drinks, fructose consumption, and the risk of gout in men: prospective cohort study. BMJ 2010;3:1-9.
So A, Thorens B. Uric acid transport and disease. J Clin Invest 2010;120:1791-9.
Hosseini-Esfahani F, Bahadoran Z, Mirmiran P, Hosseinpour-Niazi S, Hosseinpanah F, Azizi F. Dietary fructose and risk of Metabolic syndrome in adults: Tehran Lipid and Glucose Study. Nutr Metabol 2011;8:50-62.
Lanaspa MA, Tapia E, Soto V, Sautin Y, Sánchez-Lozada LG. Uric acid and fructose: Potential biological mechanisms [Abstract F-PO376]. J Am Soc Nephrol 2007;18:184A. Disponible en: http://hinarigw. who.int/whalecomwww.sciencedirec t.com/whalecomO/science?_ob=Redirect URL&_method=outwardLink&_partner Name=27 983&_origin=article&_zone=art=page& _linktype=scopusAuthorDocuments_Tar get. Fecha de último acceso: 14 de octubre de 2011.
Stanhope KL, Havel PJ. Endocrine and metabolic effects of consuming beverages sweetened with fructose, glucose, sucrose, or high-fructose corn syrup. Am J Clin Nutr 2008;88:1733S- 1737S.
Le KA, Tappy L. Metabolic effects of fructose. Curr Opin Nutr Metab Care 2006;9:469-75.
Rutledge AC, Adeli K. Fructose and the metabolic syndrome: pathophysiology and molecular mechanisms. Nutr Rev 2007;65:S13-S23.
Johnson RJ, Segal MS, Sautin Y. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr 2007;86: 899-906.
Stanhope KL, Havel PJ. Fructose consumption: recent results and their potential implications. Ann NY Acad Sci 2010;(1190):15-24.
Stanhope KL, Havel PJ. Fructose consumption: potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance. Curr Opin Lipidol 2008; 19:16-24.
Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremen AA, Gram JL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 2009;119:1322-34.
Sun SZ, Flickinger BD, Williamson- Hughes PS, Empie MW. Lack of association between dietary fructose and hyperuricemia risk in adults. Nutr Metabol 2010;7:16-27.
Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K. Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic síndrome. Am J Physiol Endocrinol Metab 2010;299:E685-E694.
Hernández Triana M, Porrata C, Jiménez S. Dietary reference intakes for the Cuban population, 2008. MEDICC Review 2009;11(4):9-16. Disponible en: http://mediccreview.medicc.org/articles/ mr_115.pdf. Fecha de última visita: 14 de octubre de 2011.
Díaz ME, Jiménez S, García RG. Overweight, obesity, central adiposity and associated chronic diseases in Cuban adults. MEDICC Review 2009;11(4): 13-19. Disponible en: http://www.medicc.org/mediccreview/art icles/mr_118.pdf. Fecha de última visita: 14 de octubre de 2011.
Herrera Valdés R. Practice prevalence of obesity and its association with chronic kidney disease, hypertension and Diabetes mellitus. Isle of Youth Study (ISYS), Cuba. MEDICC Review 2008; 10(2):14-19. Disponible en: http://www.medicc.org/mediccreview/art icles/mr_30.pdf. Fecha de última visita: 14 de octubre de 2011.
Esquivel M, González C. Excess weight and adiposity in children and adolescents in Havana, Cuba: Prevalence and trends, 1972 to 2005. MEDICC Review 2010; 12(2): 32-40. Disponible en: http://mediccreview.medicc.org/articles/ mr_140.pdf. Fecha de última visita: 14 de octubre de 2011.
Hernández Triana M. Fitness vs. Obesity in Cuban children: Battling the biases of gender and geography. MEDICC Review 2010;12(2):23-29. Disponible en: http://www.medicc.org/mediccreview/art icles/mr_146.pdf. Fecha de última visita: 14 de octubre de 2011.
Lehninger AL, Nelson DL, Cox MM. Glycolysis and catabolism of hexoses. En: Principles of Biochemistry (Editores: Lehninger AL, Nelson DL, Cox MM). Segunda Edición. Worth Publishers. New York: 2004. pp. 400- 36.
Mathews CK, van Holde KE. Carbohydrate metabolism: Glycolysis, gluconeogenesis, glycogen metabolism, and the pentose phosphate pathway. En: Biochemistry (Editores: Mathews CK, van Holde KE). Cuarta Edición. Instock Publisher. New Jersey: 2012. pp. 503- 40.
Voet D, Voet JG, Pratt CW. Glucose catabolism. En: Fundamentals of Biochemistry: Life at the molecular level (Editores: Voet D, Voet JG, Pratt CW). Cuarta Edición. John Wiley & Sons. Nueva York: 2010. pp. 472-516.
Cardellá L, Hernández R. Monosacáridos. En: Bioquímica Médica (Editores: Cardellá L, Hernández R). Primera Edición. Tomo I. Editorial Ciencias Médicas. La Habana: 1999. pp. 105-117.
Cardellá L, Hernández R. Metabolismo de los glúcidos. En: Bioquímica Humana (Editores: Cardellá L, Hernández R). Primera Edición. Editorial Ciencias Médicas. La Habana: 2007. pp. 133-63.
Sakar Y, Nazaret C, Lettéron P. Positive regulatory control loop between gut leptin and intestinal GLUT2/GLUT5 transporters links to hepatic metabolic Functions in rodents. PLoS One 2009; 4(11):e7935. Disponible en: http://www.ncbi.nlm.nih.gov/pmc/article s/PMC2780353/?tool=pmcentrez. Fecha de última visita: 25 de febrero de 2012.
Douard V, Ferraris R. Regulation of the fructose transporter GLUT5 in health and disease. Am J Physiol Endocrinol Metab 2008;295:E227-E237.
Stuart C.A, Yin D, Howell ME, Dykes RJ, Laffan JJ, Ferrando AA. Hexose transporter mRNAs for GLUT 4, GLUT 1 and GLUT 12 predominate in human muscle. Am J Physiol Endocrinol Metab 2002;104:227-37.
Shu R, David ES, Ferraris RP. Luminal fructose modulates fructose transport and GLUT-5 expression in small intestine of weaning rats. Am J Physiol Gastrointest Liver Physiol 1998;274: 232-9.
Kayano T, Burant CF, Fukumoto H. Human facilitative glucose transporter. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6). Human facilitative glucose transporters. J Biol Chem 1990;265: 13276-82.
Fu Y, Maianu L, Melbert BR. Facilitative glucose transporter gene expression in human lyphocytes, monocyte and macrophages; a role for GLUT isoforms 1, 3, and 5 in the immune response and foam cell formation. Blood Cells Mol Dis 2004; 32:182-90.
Concha II, Velásquez FV, Martínez JM. Human erythrocytes express GLUT 5 and transport fructose. Blood 1997;89: 4190-5.
Gouyon F, Onesto C, Dalet V, Pages G, Leturque A, Brot-Laroche E. Fructose modulates GLUT5 mRNA stability in differentiated Caco-2 cells: role of cAMP-signalling pathway and PABP (polyadenylated-binding protein)- interacting protein (Paip) 2. Biochem J 2003;375(Pt 1):167-74.
Qu S, Su D, Altomonte J. PPARα mediates the hypolipidemic action of fibrates by antagonizing FoxO1. Am J Physiol Endocrinol 2007;292: E421-E434.
Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S, Befroy D, et al. Mechanism of hepatic insulin resistance in nonalcoholic fatty liver disease. J Biol Chem 2004;279:32345-53.
Tuncman G, Hirosumi J, Solinas G. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. PNAS 2007; 103:10741-6.
Stanhope KL, Havel PJ. Fructose consumption: Considerations for future research on its effects on adipose distribution, lipid metabolism, and insulin sensitivity in humans. J Nutr 2009;139:1236S-1241S.
Hotamisligil GS, Erbay E. Nutrient sensing and inflammation in metabolic diseases. Nature Review Immunology 2008;8:923-34.
Gustafson B, Hammarstedt A, Anderson CX. Inflamed adipose tissue: a culprit underlying the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol 2007;27:2276-83.
Zulet MA, Puchau B, Navarro C. Biomarcadores del estado inflamatorio: nexo de unión con la obesidad y complicaciones asociadas. Nutr Hosp [España] 2007;22:511-27.