2014, Number 2
<< Back Next >>
Rev Cubana Hematol Inmunol Hemoter 2014; 30 (2)
Phenotypic characterization of mesenchymal human stem cell from bone marrow and adipose tissue preliminary results
Macías-Abraham C, del Valle-Pérez LO, Galván CJA, de la Cuétara BK, Socarrás FBB, Hernández RP, Ballester SJM
Language: Spanish
References: 28
Page: 162-170
PDF size: 172.25 Kb.
ABSTRACT
Introduction: mesenchymal stem cells (MSCs) have phenotypic and functional characteristics whichgives them a broad therapeutic potential for possible use in regenerative cell therapy, allogeneic transplant rejection and chronic inflammatory diseases.
Objective: to evaluate the expression of moleculemembranes expression to identify molecular patterns characteristic of human MSCs maintained in culture.
Methods: the phenotypic expression of mononuclear cells from bone marrow wereobtained by bone marrow aspiration, separated by Ficoll and cultured ex vivo between passages or subcultures 3 and 16 and adipocytes cultured obtained from enzyme extraction of adipose tissue of healthy donor. Double staining was performed for molecules CD34/CD45, CD34/CD90, CD34/CD117 and CD34/CD44.
Results: preliminary results showed that cultured mononuclear cells from bone marrow between passage 4 and 8 of culture expressed 45,13 % CD34-/CD45- cells (double-negative), corresponding to 25,24 % CD34-/CD90+ cells and 96,90 % of CD34-/CD117-. Adipocytes from culture cells showed 52,3 % CD34-/CD45- (double-negative), 12,31 % cells CD34-/CD90+, 43,31 % CD34-/CD117- (double-negative). Our results suggest that both cultures were differentiated to MSCs. Adipocytes from MSCs showed 64,68 % of cells with expression of CD44 adhesion molecule conferring functional homing properties.
Conclusions: these preliminary results corroborate that the experimental methods used in cultivation are effective for obtaining MSCs with therapeutic purposes.
REFERENCES
Macías Abraham C, del Valle Pérez LO, Baganet Cobas A, Dorticós Balea E, Jaime Fagundo JC, Lam Díaz RM, et al. Caracterización fenotípica de las células madres de médula ósea utilizadas en la terapia celular regenerativa. Rev Cubana Hematol Inmunol Hemoter 2011;27(2):233-43.
Hernández Ramírez P. Medicina regenerativa y células madre. Mecanismos de acción de las células madre adultas. Rev Cubana Hematol Inmunol Hemoter [revista en Internet]. 2009 [Acceso: 14 de enero de 2013];25(1): Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864- 02892009000100002&lng=es
Dahlgren LA. Review of treatment options for equine tendon and ligament injuries: what's new and how do they work? En: 51st Annual Convention American Association Equine Practitioners. Seattle, Washington, USA. 2005. Dic. 3-7.
Strem B, Hicok K, Zhu M, Wulur I, Alfonso Z, Schreiber R, et al. Multipotential Differentiation of Adipose Tissue-Derived Stem. Keio J Med 2005;54:132-41.
Zuk P, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al.Human adipose tissue is a source of multipotent stem cells. MolBiol Cell. 2002;13:4279-95.
Dominici M, Le Blanc K, Mueller I, Staper Cortenbach I, Marini F, Krause D et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315-17.
Macías Abraham C, del Valle Pérez LO, Hernández Ramírez P, Ballester Santovenia JM. Características fenotípicas y funcionales de las células madre mesenquimales y endoteliales. Rev Cubana Hematol Inmunol Hemoter. 2010;26(4):256-75.
De Ugarte DA, Alfonso Z, Zuk PA, Elbarbary A, Zhu M, Ashjian P, et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. ImmunolLetter 2003;89(2-3):267-70.
Beyer N, Da Silva L. Mesenchymal Stem Cells: Isolation in vitro. Expansion and characterization. HandbExpPharmacol. 2006;174:249-82.
Lakshmipathy U, Verfaille C. Stem Cell Plasticity. Blood Rev 2005;19:29-38.
Rodriguez V. Células Madre: Conceptos Generales y Perspectivas de Investigación. Universitas Scientiarum 2005;10:5-14.
Ryan JM, Barry FP, Murphy JM, Mahon BP. Mesenchymal stem cells avoid allogeneic rejection. J Inflamm 2005;2:8.
Ryan JM, Barry F, Murphy JM, Mahon BP. Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol 2007;149:353-63.
Tse WT, Pendleton D, Beyer W, D`Andrea A, Guinan EC. Bone marrow derived mesenchymal stem cells (MSC) suppress T-cell activation without inducing anergy. Cytotherapy 2001;3:417a.
Holyoake TL, Alcorn MJ, Richmond L, Farrell E, Pearson C, Green R, et al. CD34 positive PBPC expanded ex vivo may not provide durable engraftment following myeloablativechemoradiotherapy regimens. BM Transplant 1997;19:1095-101.
Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppresion of allogenic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplant 2003;75:389-97.
Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003;57:11-20.
Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogenic immune cell responses. Blood 2005;105:1815-22.
Zhang W, Ge W, Li C, You S, Liao L, Han Q, et al. Effects of mesenchymal stem cells on differentiation, maduration, and function of human monocyte-derived dendritic cells. Stem Cells Dev 2004;13:263-71.
Maccario R, Podesta M, Moretta A, Cometa A, Comoli P, Montagna D, et al. Interaction of human mesenchymal stem cells with cells involved in alloantigenspecific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica 2005;90:516-25.
Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C. Adipose-derived stem cells: isolation, expansion and differentiation. Methods 2008 Jun;45(2):115-20. doi: 10.1016/j.ymeth.2008.03.006.
D’ Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC. Marrowisolated adult multilineage inducible (Miami) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiated potential. J Cell Science 2004;117:2971-81.
Zuba-Surma EK, Kucia M, Ratajczak J, Ratajczak MZ. Small stem cells in adult tissues: Very small embryonic-like stem cells stand up! Cytometry Part A 2009;75A:4-13.
Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001;98:2615-25.
Clarke E, Wognum AW, Marciniak R, Eaves AC. Mesenchymal cell precursors from human bone marrow have a phenotype that is distinct from cultured mesenchymal cells and are exclusively present in a small subset of CD45low, SH2+cells. Blood 2001;98:355a.
Jones EA, Kinsey SE, English A, Jones RA, Straszynski L, Meredety DM, et al. Isolation and Characterization of bone marrow multipotentialmesenchymal progenitors cell. Arthritis and Rheumatism 2002;46:3349-60.
Foudah D, Redondo J, Caldara C, Carini F, Tredici G, Miloso M. Expression of Neural Markers by Undifferentiated Rat Mesenchymal Stem Cells. J Biomed Biotechnol. Published on Line 2012 Oct. doi: 10.1155/2012/820821.
Foudah D, Redondo J, Caldara C, Carini F, Tredici G, Miloso M. Human mesenchymal stem cells express neuronal markers after osteogenic and adipogenic differentiation. CellBiol Mol Lett 2013;Jun;8(2):163-66.