2014, Number 2
<< Back Next >>
Gac Med Mex 2014; 150 (2)
Colorectal cancer (CCR): genetic and molecular alterations
Juárez-Vázquez CI, Rosales-Reynoso MA
Language: Spanish
References: 93
Page: 154-164
PDF size: 112.64 Kb.
ABSTRACT
The aim of this review is to present a genetic and molecular overview of colorectal carcinogenesis (sporadic and
hereditary origin) as a multistage process, where there are a number of molecular mechanisms associated with the
development of colorectal cancer and genomic instability that allows the accumulation of mutations in proto-oncogenes
and tumor suppressor genes, chromosomal instability, and methylation and microsatellite instability, and the involvement
of altered expression of microRNAs’ prognosis factors.
REFERENCES
Manne U, Shanmugam C, Katkouri VR, Bumpers HL, Grizzie WE. Development and progression of colorectal neoplasia. Cancer Biomark. 2010;9(1-6):235-65.
[Internet] Disponible en: http://globocan.iarc.fr.
Huxley RR. The impact of dietary and lifestyle risk factors on risk of colorectal cancer: a quantitative overview of the epidemiological evidence. Int J Cancer. 2009;125:171-80.
Lin OS. Acquired risk factors for colorectal cancer. Methods Mol Biol. 2009;472:361-72.
Hisamudding IM, Yang VW. Genetics of colorectal cancer. Med Gen Med. 2004;6:13-9.
Worthley DL, Leggett BA. Colorectal cancer: molecular features and clinical opportunities. Clin Biochem Rev. 2010;31(2):31-8.
Jenkinson F, Steele RJ. Colorectal cancer screening – methodology. Surgeon. 2010;8:164-71.
Markowitz SD, Bertagnolli MM. Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med. 2009;361(25):2449-60.
Deng G, Bell I, Crawley S, et al. BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditarynonpolyposis colorectal cancer. Clin Cancer Res. 2004;10(1 Pt 1):191-5.
Palacio Rua AK, Muñeton Peña CM. Bases moleculares del cáncer colorectal. Iatreia. 2012;25:137-48.
Worthley DL, Whitehall VL, Spring KJ, Leggett BA. Colorectal carcinogenesis: road maps to cancer. World J Gastroenterol. 2007;13(28): 3784-91.
Pritchard CC, Grady WM. Colorectal cancer molecular biology moves into clinical practice. Gut. 2011;60(1):116-29.
Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759-67.
Sparks AB, Morin PJ, Vogelstein B, Kinzler KW. Mutational analysis of the APC/beta catenina/tcf pathway in colorectal cancer. Cancer Res. 1998;58:1130-4.
Arnold CN, Goel A, Blum HE, Boland CR. Molecular pathogenesis of colorectal cancer: Implications for molecular diagnosis. Cancer. 2005;104:2035-47.
Hisamuddin IM, Yang VW. Molecular Genetics of Colorectal Cancer: An Overview. Curr Colorectal Cancer Rep. 2006;2:53-9.
De la Chapelle A. A genetic predisposition to colorectal cancer. Nat Rev Cancer. 2004;4:769-80.
Kinzler KW, Vogelstein B. Landscaping the cancer terrain. Science. 1998;280:1036-7.
Cruz-Correa M, Giardiello FM. Familial adenomatous poliposis. Gastrointest Endosc. 2003;58:885-94.
Nishisho I, Nakamura Y, Miyoshi Y, et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science. 1991;253:665-9.
Groden J, Thliveris A, Samowitz W, et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell. 1991; 66:589-600.
Soravia C, Berg T, Madlensky L, et al. Genotype-phenotype correlations in attenuated adenomatous polyposis coli. Am J Hum Genet. 1998;62:1290-301.
Papadopoulos N, Lindblom A. Molecular basis of HNPCC: mutations of MMR genes. Hum Mutat. 1997;10:89-99.
Mecklin JP, Jarvinen HJ. Tumor spectrum in cancer family syndrome [hereditary non polyposis colorectal cancer]. Cancer. 1991;68:1109-12.
Hemminki A, Avizienyte E, Roth S, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Duodecim. 1998;114(7):667-8.
Jenne DE, Reimann H, Nezu J, et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet. 1998;18:38-43.
Sayed MG, Ahmed AF, Ringold JR, et al. Germline SMAD4 or BMPR1A mutations and phenotype of juvenile polyposis. Ann Surg Oncol. 2002;9:901-6.
Olschwang S, Serova-Sinilnikova OM, Lenoir GM, Thomas G. PTEN germ-line mutations in juvenile polyposis coli. Nat Genet. 1998;18:12-4.
Marsh DJ, Kum JB, Lunetta KL, et al. PTEN mutation spectrum and genotype-phenotype correlations in Bannayan-Riley-Ruvalcaba syndrome suggest a single entity with Cowden syndrome. Hum Mol Genet. 1999;8:1461-72.
Chen YM, Ott DJ, Wu WC, Gelfand DW. Cowden’s disease: a case report and literature review. Gastrointest Radiol. 1987;12(4):325-9.
Almenar Besó R, Bagan Sebastian V, Milian Masanet MA, Jimenez Soriano Y. Síndrome de Cowden: presentación de un caso clínico con lesiones orales. Ann Med Inter. 2001:18: 426-8.
Parisi MA, Beth Dunulos M, Leppig KA, Sybert VP, Eng C, Hudgins L. The spectrum and evolution of phenotypic findings in PTEN mutation positive cases of Bannayan Riley Ruvalcaba syndrome. J Med Genet. 2001;38:52-8.
Jang YH, Lim SB, Kim MJ, et al. Three novel mutations of the APC gene in Korean patients with familial adenomatous polyposis. Cancer Genet Cytogenet. 2010;200(1):34-9.
Yang VW. APC as a checkpoint gene: the beginning or the end? Gastroenterology. 2002;123:935-9.
Midgley CA, White S, Howitt R, et al. APC expression in normal human tissues. J Pathol. 1997;181:426-33.
MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1):9-26.
Nathke IS. The adenomatous polyposis coli protein: the Achilles heel of the gut epithelium. Annu Rev Cell Dev Biol. 2004;20:337-66.
Reya T, Clevers H. Wnt signaling in stem cells and cancer. Nature. 2005;434:843-50.
Gregorieff A, Clevers H. Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev. 2005;19:877-90.
Bhanot P, Brink M, Samos CH, et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature. 1996;382:225-30.
Tamai K, Semenov M, Kato Y, et al. LDL-receptor-related proteins in Wnt signal transduction. Nature. 2000;407:530-5.
Pinson KI, Brennan J, Monkley S, et al. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature. 2000;407:535-8.
Ochoa-Hernández AB, Juárez-Vázquez CI, Rosales-Reynoso MA, Barros- Núñez P. WNT--catenin signaling pathway and its relationship with cancer. Cir Cir. 2012;80:389-98.
Behrens J, von Kries JP, Kuhl M, et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 1996; 382:638-42.
He TC, Sparks AB, Rago C, et al. Identification of MYC as a target of the APC pathway. Science. 1998;281:1509-12.
Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398:422-6.
Miyoshi Y, Nagase H, Ando H, et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet. 1992;1:229-33.
Webster MT, Rozycka M, Sara E, et al. Sequence variants of the axin gene in breast, colon, and other cancers: an analysis of mutations that interfere with GSK3 binding. Genes Chromosomes Cancer. 2000;28: 443-53.
Sparks AB, Morin PJ, Vogelstein B, Kinzler KW. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res. 1998;58(6):1130-4.
Smith KJ, Levy DB, Maupin P, et al. Wild-type but not mutant APC associates with the microtubule cytoskeleton. Cancer Res. 1994;54:3672-5.
Su LK, Burrell M, Hill DE, et al. APC binds to the novel protein EB1. Cancer Res. 1995;55:2972-7.
Matsumine A, Ogai A, Senda T, et al. Binding of APC to the human homolog of the Drosophila discs large tumor suppressor protein. Science. 1996;272:1020-3.
Fodde R, Kuipers J, Rosenberg C, et al. Mutations in the APC tumor suppressor gene cause chromosomal instability. Nat Cell Biol. 2001;3:433-8.
Kaplan KB, Burds AA, Swedlow JR, et al. A role for the adenomatous polyposis coli protein in chromosome segregation. Nat Cell Biol. 2001;3:429-32.
Leslie A, Stewart A, Baty DU, et al. Chromosomal changes in colorectal adenomas: relationship to gene mutations and potential for clinical utility. Genes Chromosomes Cancer. 2005;45:126-35.
Kim DW, Kim IJ, Kang HC, et al. Mutation spectrum of the APC gene in 83 Korean FAP families. Hum Mutat. 2005;26(3):281.
Smith G, Carey FA, Beattie J, et al. Mutations in APC, Kirsten-ras, and p53-alternative genetic pathways to colorectal cancer. Proc Natl Acad Sci U S A. 2002;99(14):9433-8.
Tejpar S, Van Cutsem E. Molecular and genetic defects in colorectal tumorigenesis. Best Pract Res Clin Gastroenterol. 2002;16(2):171-85.
Laken SJ, Petersen GM, Gruber SB, et al. Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nat Genet. 1997; 17:79-83.
Hollstein M, Sidransky D, Vogelstein B, et al. TP53 mutations in human cancers. Science. 1991;253:49-53.
Vogelstein B, Lane D, Levine AJ. Surfing the TP53 network. Nature. 2000;408:307-10.
Wsierska-Gadek J, Horky M. How the nucleolar sequestration of TP53 protein or its interplayers contributes to its [re]-activation. Ann N Y Acad Sci. 2003;1010:266-72.
Momand J, Zambetti GP, Olson DC, et al. The mdm-2 oncogene product forms a complex with theTP53 protein and inhibits TP53-mediated transactivation. Cell. 1992;69:1237-45.
Agarwal ML, Taylor WR, Chernov MV, et al. The TP53 network. Biol Chem. 1998;273:1-4.
Harris SL, Levine AJ. The TP53 pathway: positive and negative feedback loops. Oncogene. 2005;24:2899-908.
el-Deiry WS, Tokino T, Velculescu VEL, et al. WAF1, a potential mediator of TP53 tumor suppression. Cell. 1993;75:817-25.
Taylor WR, Stark GR. Regulation of the G2/M transition byTP53. Oncogene. 2001;20:1803-15.
Hermeking H, Lengauer C, Polyak K, et al. 14-3-3 sigma is a TP53- regulated inhibitor of G2/M progression. Mol Cell. 1997;1:3-11.
Sahin S, De Pinho RA. Axis of ageing: Telomeres, p53 and mitochondria. Nat Rev Mol Cell Biol. 2012;13:397-404.
Freeman JA, Espinosa JM. The impact of post-transcriptional regulation in the TP53 network. Brief Funct Genomics. 2013;12(1):46-57.
Wang W, Wang GQ, Sun XW, et al. Prognostic values of chromosome 18q microsatellite alterations in stage II colonic carcinoma. World J Gastroenterol. 2010;16:6026-34.
Font A, Abad A, Monzó M, et al. Prognostic value of K-ras mutations and allelic imbalance on chromosome 18q in patients with resected colorectal cancer. Dis Colon Rectum. 2001;44(4):549-57.
Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3:459-65.
Chang DZ, Kumar V, Ma Y, Li K, Kopetz S. Individualized therapies in colorectal cancer: KRAS as a marker for response to EGFR-targeted therapy. J Hematol Oncol. 2009;2:18.
Jancík S, Drábek J, Radzioch D, Hajdúch M. Clinical relevance of KRAS in human cancers. J Biomed Biotechnol. 2010;2010:150960.
Shields JM, Pruitt K, McFall A, et al. Understanding Ras: ‘it ain’t over ‘til it’s over’. Trends Cell Biol. 2000;10(4):147-54.
Bos JL. Ras oncogenes in human cancer: a review. Cancer Res. 1989;49:4682-9.
Andreyev HJ, Norman AR, Cunningham D, et al. Kirsten ras mutations in patients with colorectal cancer: the ‘RASCAL II’ study. Br J Cancer. 2001;85(5):692-6.
Tuveson DA, Shaw AT, Willis NA, et al. Endogenous oncogenic Kras[ G12D] stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell. 2004;5:375-87.
Janssen KP, el-Marjou F, Pinto D, et al. Targeted expression of oncogenic K-ras in intestinal epithelium causes spontaneous tumorigenesis in mice. Gastroenterology. 2002;123:492-504.
Siddiqui AD, Piperdi B. KRAS mutation in colon cancer: a marker of resistance to EGFR-I therapy. Ann Surg Oncol. 2010;17(4):1168-76.
Sharma SG, Gulley ML. B-RAF mutation testing in colorectal cancer. Arch Pathol Lab Med. 2010;134(8):1225-8.
Bettess MD, Dubois N, Murphy MJ, et al. MYC is required for the formation of intestinal crypts but dispensable for homeostasis of the adult intestinal epithelium. Mol Cell Biol. 2005;25:7868-78.
Muncan V, Sansom OJ, Tertoolen L, et al. Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene MYC. Mol Cell Biol. 2006;26:8418-26.
Irby RB, Mao W, Coppola D, et al. Activating SRC mutation in a subset of advanced human colon cancers. Nat Genet. 1999;21:187-90.
Dixon DA, Blanco FF, Bruno A, Patrignani P. Mechanistic aspects of COX-2 expression in colorectal neoplasia. Recent Results Cancer Res. 2013;191:7-37.
Carter AB, Misyak SA, Hontecillas R, Bassaganya-Riera J. Dietary modulation of inflammation-induced colorectal cancer through PPAR. PPAR Res. 2009;2009:498352.
Harman FS, Nicol CJ, Marin HE, Ward JM, Gonzalez FJ, Peters JM. Peroxisome proliferator-activated receptor-delta attenuates colon carcinogenesis. Nat Med. 2004;10(5):481-3.
Yerushalmi HF, Besselsen DG, Ignatenko NA, et al. The role of NO synthases in arginine-dependent small intestinal and colonic carcinogenesis. MolCarcinog. 2006;45(2):93-105.
Wong JC, Chan SK, Schaeffer DF, et al. Absence of MMP2 expression correlates with poor clinical outcomes in rectal cancer, and is distinct from MMP1-related outcomes in colon cancer. Clin Cancer Res. 2011; 5;17(12):4167-76.
Wang SS, Esplin ED, Li JL, et al. Alterations of the PPP2R1B gene in human lung and colon cancer. Science. 1998;282(5387):284-7.
Takagi Y, Futamura M, Yamaguchi K, Aoki S, Takahashi T, Saji S. Alterations of the PPP2R1B gene located at 11q23 in human colorectal cancers. Gut. 2000;47(2):268-71.
Schetter AJ, Harris CC. Alterations of microRNAs contribute to colon carcinogenesis. Semin Oncol. 2011;38(6):734-42.