2011, Number 1
<< Back Next >>
RCAN 2011; 21 (1)
Influencia de la rehabilitación neuromuscular en el estado nutricional del paciente con trauma raquimedular dorsolumbar
Zamora PF, Santos HC, Rosa AC, Suárez MC, Hernández GE, Morúa-Delgado VLP, Rodríguez CML, Gorris GM, González MC
Language: Spanish
References: 37
Page: 14-34
PDF size: 674.00 Kb.
ABSTRACT
Rationale: Spinal cord trauma is cause of paraplegia, visceral and vegetative damages, muscle dystrophy, disability and nutritional disorders. Nutritional status might affect the response to neural muscle rehabilitation.
Material and method: Forty paraplegic patients (Men: 75%), younger than 40 years old, received 8 weekly sessions 38.5 hours each of structured exercises in different
domains of neural muscle function as part of the Neurological Rehabilitation Program at the CIREN International Center for Neurological Restoration, Havana City (Cuba). Skeletal muscle mass (total/regional)
was quantified from arm circumference and creatinine urinary excretion.
Results: Neurological rehabilitation resulted in
improvement of motor activity, sensitivity to tactile as well as pain stimulation, and of patient’s validism and autonomy. An increase in arm circumference and creatinine urinary excretion was observed after completion of
the rehabilitation program. Differences observed in the estimates of skeletal muscle mass can be reconciled if is taken into account that scapular muscle belt might
respond to neural muscle rehabilitation better than other muscle groups more affected by paraplegia.
Conclusions: The applied neural rehabilitation regime, qualified as shortlasting but intensive, brought about measurable changes in the Barthel index and the motor and sensitive dimensions of ASIA scale, along with an increase in arm circumference and urinary creatinine excretion, these latest indicators that constitute major signs of prognosis of rehabilitation.
REFERENCES
García Vicente E, Martín Rubio A, García EL, García MD. Trauma raquimedular. MEDICRIT 2007;4: 66-74.
Kirshblum SC, Groah SL, McKinley WO, Gittler MS, Stiens SA. Spinal cord injury medicine. 1. Etiology, classification, and acute medical management. Arch Phys Med Rehabil 2002;83(3 Suppl 1):S50-S58.
Santiago P, Fessler RG. Traumatismos de la médula espinal. En: Neurología clínica: diagnóstico y tratamiento (Editores: Bradley WG, Daroff RB, Fenichel GM, Jankovic J). Cuarta Edición. Elsevier. Madrid: 2004. pp 1141-1170.
Ropper AH, Brown RH. Adams and Victor´s Principles of Neurology. Octava Edición. McGraw-Hill. New York: 2005.
Onose G, Anghelescu A, Muresanu DF, Padure L, Haras MA, Chendreanu CO et al. A review of published reports on neuroprotection in spinal cord injury. Spinal Cord 2009;47:716-26.
Bergado Rosado JA, Almaguer Melian W. Cellular mechanisms of neuroplasticity. Rev Neurol 2000; 31:1074-95.
Biering-Sorensen F. Evidence-based medicine in treatment and rehabilitation of spinal cord injured. Spinal Cord 2005;43:587-92.
Houda B. Evaluation of nutritional status in persons with spinal cord injury: a prerequisite for successful rehabilitation. SCI Nurs 1993;10:4-7.
Maynard FM Jr., Bracken MB, Creasey G, Ditunno JF Jr., Donovan WH, Ducker TB et al. International Standards for Neurological and Functional Classification of Spinal Cord Injury. American Spinal Injury Association. Spinal Cord 1997; 35:266-74.
Mahoney FI, Barthel DW. Functional evaluation: the Barthel Index. Md State Med J 1965;14:61-5.
Lohman TG, Roche AF, Martorell R. Anthropometric standardization reference manual. Human Kinetics. Champaign, IL: 1988.
Lee RC, Heymsfield SB, Shen W, Wang ZM. Total-body and regional skeletal muscle mass measurement methods: an overview. Int J Body Compos Res 2003;1:93-102.
Lee RC, Wang ZM, Heo M, Ross R, Janssen I, Heymsfield SB. Total-body skeletal muscle mass: development and cross-validation of anthropometric prediction models. Am J Clin Nutr 2000;72:796-803.
Heymsfield SB, McManus C, Smith J, Stevens V, Nixon DW. Anthropometric measurement of muscle mass: revised equations for calculating bone-free arm muscle area. Am J Clin Nutr 1982;36:680-90.
Heymsfield SB, Arteaga C, McManus C, Smith J, Moffitt S. Measurement of muscle mass in humans: validity of the 24-hour urinary creatinine method. Am J Clin Nutr 1983;37: 478-94.
Wang ZM, Gallagher D, Nelson ME, Matthews DE, Heymsfield SB. Totalbody skeletal muscle mass: evaluation of 24-h urinary creatinine excretion by computerized axial tomography. Am J Clin Nutr 1996;63:863-9.
Walser M. Creatinine excretion as a measure of protein nutrition in adults of varying age. JPEN J Parenter Enteral Nutr 1987;11(5 Suppl): 73S-8S.
Barreto Penié J, Santana Porbén S, Consuegra Silverio D. Intervalos de referencia locales para la excreción urinaria de creatinina en una población adulta. Nutr Hosp [España] 2003;18:65-75.
Forbes GB, Bruining GJ. Urinary creatinine excretion and lean body mass. Am J Clin Nutr 1976;29: 1359-66.
Verdier P, Beare-Rogers JL. The Canadian Nutrient File. J Can Diet Assoc 1984;45:52-5.
Martínez Canalejo H, Santana Porbén S. Manual de Procedimientos Bioestadísticos. Editorial Ciencias Médicas. La Habana: 1990.
Cardus D, McTaggart WG. Body sodium and potassium in men with spinal cord injury. Arch Phys Med Rehabil 1985;66:156-9.
Bauman WA, Spungen AM, Wang J, Pierson RN Jr. The relationship between energy expenditure and lean tissue in monozygotic twins discordant for spinal cord injury. J Rehabil Res Dev 2004;41:1-8.
Nuhlicek DN, Spurr GB, Barboriak JJ, Rooney CB, El Ghatit AZ, Bongard RD. Body composition of patients with spinal cord injury. Eur J Clin Nutr 1988;42:765-73.
Mojtahedi MC, Valentine RJ, Evans EM. Body composition assessment in athletes with spinal cord injury: comparison of field methods with dual-energy X-ray absorptiometry. Spinal Cord 2009;47:698-704.
Jones LM, Goulding A, Gerrard DF. DEXA: a practical and accurate tool to demonstrate total and regional bone loss, lean tissue loss and fat mass gain in paraplegia. Spinal Cord 1998; 36:637-40.
Maggioni M, Bertoli S, Margonato V, Merati G, Veicsteinas A, Testolin G. Body composition assessment in spinal cord injury subjects. Acta Diabetol 2003;40(Suppl 1): S183-S186.
Ditunno JF Jr, Formal CS. Chronic spinal cord injury. N Engl J Med 1994;330:550-6.
Maynard FM, Reynolds GG, Fountain S, Wilmot C, Hamilton R. Neurological prognosis after traumatic quadriplegia. Three-year experience of California Regional Spinal Cord Injury Care System. J Neurosurg 1979;50:611-6.
Harness ET, Yozbatiran N, Cramer SC. Effects of intense exercise in chronic spinal cord injury. Spinal Cord 2008;46:733-7.
Scivoletto G, Morganti B, Cosentino E, Molinari M. Utility of delayed spinal cord injury rehabilitation: an Italian study. Neurol Sci 2006;27: 86-90.
Sentmanat Belisón A. De vuelta a la vida: sistema de neurorrehabilitación multifactorial intensiva. Editorial Sangova. Madrid: 2003.
Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 1997;277:1597-604.
Fawcett JW, Curt A, Steeves JD, Coleman WP, Tuszynski MH, Lammertse D et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: Spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 2007;45:190-205.
Pospisil M. Prácticas de antropología física. Consejo Nacional de Universidades. La Habana: 1965.
Díaz Sánchez ME. Manual de técnicas antropométricas para estudios nutricionales. INHA Instituto de Nutrición e Higiene de los Alimentos. La Habana: 2005.
Santos CM, Ceballos Mesa A, Ugarte Suárez J, Santana Porbén S. Desnutrición, sobrepeso, obesidad y osteoporosis. Criterios para el diagnóstico biofísico de una población adulta. RCAN Rev Cubana Aliment Nutr 2008;18(2 Supl 1): S1-S84.