2013, Number 1
<< Back Next >>
Rev Esp Cienc Salud 2013; 16 (1)
Bacterial xylanases and their industrial application
Cooper BBL
Language: Spanish
References: 30
Page: 19-22
PDF size: 328.66 Kb.
ABSTRACT
Hemicellulose is the second most important polysaccharide in nature after cellulose. Recently, xylanolitic
enzymes have been extensively studied for their biotechnological potential on numerous industrial
processes and have been classified and biochemically characterized, however there are not many
studies on bacterial xylanases.
REFERENCES
Biely P. Microbial xylanolytic systems. Trends in Biotechnology 1985; 3(11): 286-290.
Bastawde KB. Xylan structure, microbial xylanases, and their mode of action. World J Microbiol Biotechnol 1992; 8: 353–68.
Joseleau JP, Comtat J, Ruel K. Chemical structure of xylans and their interactions in the plant cell walls. In: Visser J, Beldman G, van Someren MAK, Voragen AGJ (eds). Xylans and xylanases. Amsterdam: Elsevier; 1992. p. 1–15.
Dornez E, Gebruers K, Delcour JA ,Courtin CM. Grain-associated xylanases: occurrence, variability, and implications for cereal processing. Trends in Food Science & Technology 2009; 20: 495- 510.
Whistler RL, Richards EL. Hemicelluloses. In: Pigman W, Horton D, editors. Thecarbohydrates. New York: Academic Press; 1970. p. 447–469.
Sunna A, Antranikian G. Xylanolytic enzymes from fungi and bacteria. Crit Rev Biotechnol 1997; 17: 39–67.
Beg Q K, Kapoor M, Mahajan L, Hoondal GS. Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol. 2001; 56: 326–338.
Coughlan, MP, Tuohy MG, Filho E.X., Puls J, Claeyssens M, Vranska, M y Houghes M. Enzymological aspects of microbial hemicellulases with emphasis on fungal systems. In: Michael P. Coughlan, MP, Hazlewood GP, editors. Hemicellulose and hemicellulases. London: Portland Press; 1993. p. 53-84.
Gebler J, Gilkes NR, Claeyssens M, Wilson DB, Beguin P, Wakarchuk WW, Kilburn DG, Miller RB, Warren RAJ, Withers SG. Stereoselective hydrolysis catlysed by related B-1,4-glucanases y B-1,4 xilanases. The J of Biological chemistry 1992; 267(18): 12559-12561.
Marais Susan. Enzymatic hydrolysis with commercial enzymes of a xylan extracted from hardwood pulp. University of Pretoria Tesis de maestría, Departamento de Ingeniería Química, Facultad de ingeniería, ambiente y tecnología de la información, Agosto, 2008.
Ball AS, McCarthy AJ. Production and purification of xylanase from actinomycetes. J Appl Bacteriol 1989; 66:439–444.
Beg QK, Bhushan B, Kapoor M, Hoondal GS .Production and characterization of thermostable xylanase and pectinase from a Streptomyces sp. QG-11-3. J Ind Microbiol Biotechnol. 2000; 24: 396–402.
Knob A, Terrasan C, Carmona E. β-Xylosidases from filamentous fungi: an overview. World J Microbiol Biotechnol 2010; 26: 389– 407.
Mohd Nizam B Zakariya, Tesis de licenciatura, Faculty of chemical and natural resources, University Malaysia Pahang, Abril 2008.
Ponce NT, Perez AO. Celulasas y xilanasas en la industria. Avance y Perspectiva 2002; 21: 273-277.
Veeresh J, Jin CW. Microbial xylanases: Engineering, production and industrial applications. Biotechnology Advances 2012; 30: 1219–1227.
Krengel U, Dijkstra BW. Three-dimensional Structure of Endo- 1,4-β-xylanase from Aspergillus niger: Molecular Basis for its Low pH Optimum. Journal of Molecular Biology 1996; 263(1): 70-78.
Gilkes N, Henrissat R, Kilburn D G, Miller R C, Warren R A J. Domains in Microbial 3-1,4-Glycanases: Sequence Conservation, Function, and Enzyme Families, Microbiological Reviews 1991; 55(2): 303-315.
Iumbm: International Union of Biochemistry and Molecular Biology, información en línea accesada Nov 2011 en: http://www. chem.qmul.ac.uk/iubmb/.
Biely P, Vrsanská M, Tenkanen M, Kluepfel D. Endo-β-1,4- xylanase families: differences in catalytic properties. J Biotechnol 1997; 57: 151–66.
Biely P, Biochemical aspects of the production of microbial hemicellulases. In: Michael P. Coughlan, MP, Hazlewood GP, editors. Hemicellulose and hemicellulases. London: Portland Press; 1993. p. 2-51.
Törrönen A, Rouvinen J. Structural and functional properties of low molecular weight endo-1,4-β-xylanases. J Biotechnol 1997; 57: 137–49.
Subramaniyan S, Prema, P. Biotechnology of microbial xylanases: Enzymology, molecular biology and application, Critical reviews in Biotechnology 2003; 22(1): 33-64.
Bedford MR, Classen HL. The influence of dietary xylanase on intestinal viscosity and molecular weight distribution of carbohydrates in rye-fed broiler chick. In: Visser J, Beldman G, vanSomeren MAK, Voragen AGJ (eds). Xylans and xylanases. Amsterdam: Elsevier; 1992. p. 361–370.
Maat J, Roza M, Verbakel J, Stam H, daSilra MJS, Egmond MR, Hagemans MLD, vanGarcom RFM, Hessing JGM, vanDerhondel CAMJJ, vanRotterdam C. Xylanases and their application in bakery. In: Michael P. Coughlan, MP, Hazlewood GP, editors. Hemicellulose and hemicellulases. London: Portland Press; 1993. p. 349–360.
Wong KKY, Saddler JN. Trichoderma xylanases, their properties and purification. Crit Rev Biotechnol 1992; 12: 413–435.
Kuhad RC, Singh A. Lignocellulosic biotechnology: current and future prospects. Crit Rev Biotechnol 1993; 13: 151–172.
Kapoor M, Beg QK, Bhushan B, Singh K, Dadhich KS, Hoondal GS. Application of an alkaline and thermostable polygalacturonase from Bacillus sp. MG-cp-2 in degumming of ramie (Boehmeria nivea) and sunn hemp (Crotalaria juncea) bast fibers. Process Biochem 2001; 36: 803–807.
Puchart V, Katapodis P, Biely P, Kremnicky L, Christakopoulos P, Vrsanska M, Kekos D, Marcis BJ, Bhat M.K Production of xylanases, mannanases, and pectinases by the thermophilic fungus Thermomyces lanuginosus. Enzyme Microb Technol 1999; 24: 355– 361.
Sharma HSS. Enzymatic degradation of residual non-cellulosic polysaccharides present on dew-retted flax fibers. Appl Microbiol Biotechnol 1987; 26: 358–362.