2014, Number 2
<< Back Next >>
salud publica mex 2014; 56 (2)
Anthropometric parameters’ cut-off points and predictive value for metabolic syndrome in women from Cartagena, Colombia
Mora-García GJ, Gómez-Camargo D, Mazenett E, Alario Á, Fortich Á, Gómez-Alegría C
Language: Spanish
References: 32
Page: 146-153
PDF size: 242.17 Kb.
ABSTRACT
Objective. To estimate anthropometric parameters’ (APs) cut-off points and association for metabolic syndrome (MetS).
Materials and methods. A cross-sectional study was carried out with a total of 434 adult women from Cartagena de Indias, Colombia, in 2012. APs measured were waist circumference (WC), body mass index (BMI), body adiposity index (BAI), waist-hip ratio (WHR) and waist-height ratio (WHtR). Cut-off points were estimated by a receiver operating characteristic curve (ROC). Logistic regression was applied to estimate possible associations.
Results. Cut-off points for WC, BMI, BAI, WHR and WHtR were 85 cm, 28 kg/m
2, 39%, 0.80 and 56, respectively. Only WHtR was associated to MetS (OR=1.11, CI95% [1.07-1.15]).
Conclusion. WC cut-off point was higher than those proposed for Latin-American women by the Joint Interim Statement (JIS). WHtR had a low predictive value for MetS.
REFERENCES
Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988;37(12):1595-607.
Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002;106(25):3143-3421.
Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome. An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Executive summary. Cardiology review 2005;13(6):322-327.
Alberti KG, Zimmet P, Shaw J. The metabolic syndrome--a new worldwide definition. Lancet 2005;366(9491):1059-1062.
Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998;15(7):539-553.
Bautista LE, Casas JP, Herrera VM, Miranda JJ, Perel P, Pichardo R, et al. The Latin American Consortium of Studies in Obesity (LASO). Obes Rev 2009;10(3):364-370.
Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009;120(16):1640-1645.
Azizi F, Khalili D, Aghajani H, Esteghamati A, Hosseinpanah F, Delavari A, et al. Appropriate waist circumference cut-off points among Iranian adults: the first report of the Iranian National Committee of Obesity. Arch Iranian Med 2010;13(3):243-244.
Aschner P, Buendia R, Brajkovich I, Gonzalez A, Figueredo R, Juarez XE, et al. Determination of the cutoff point for waist circumference that establishes the presence of abdominal obesity in Latin American men and women. Diabetes Res Clin Pract 2011;93(2):243-247.
Mora Garcia G, Salguedo Madrid G, Ruiz Diaz M, Ramos Clason E, Alario Bello A, Fortich A, et al. [Agreement between Five Definitions of Metabolic Syndrome: Cartagena, Colombia]. Rev Esp Salud Publica 2012;86(3):301-311.
Alayon AN, Ariza S, Baena K, Lambis L, Martinez L, Benitez L. [Active search and assessment of cardiovascular risk factors in young adults, Cartagena de Indias, 2007]. Biomedica 2010;30(2):238-244.
Shao J, Yu L, Shen X, Li D, Wang K. Waist-to-height ratio, an optimal predictor for obesity and metabolic syndrome in Chinese adults. J Nutr Health Aging 2010;14(9):782-785.
Wang F, Wu S, Song Y, Tang X, Marshall R, Liang M, et al. Waist circumference, body mass index and waist to hip ratio for prediction of the metabolic syndrome in Chinese. Nutr Metab Cardiovasc Dis 2009;19(8):542-547.
Bergman RN, Stefanovski D, Buchanan TA, Sumner AE, Reynolds JC, Sebring NG, et al. A better index of body adiposity. Obesity (Silver Spring) 2011;19(5):1083-1089.
Snijder MB, Nicolaou M, van Valkengoed IG, Brewster LM, Stronks K. Newly proposed body adiposity index (bai) by Bergman et al. is not strongly related to cardiovascular health risk. Obesity (Silver Spring). 2012;20(6):1138-1139.
Chen CC, Wang WS, Chang HY, Liu JS, Chen YJ. Heterogeneity of body mass index, waist circumference, and waist-to-hip ratio in predicting obesity-related metabolic disorders for Taiwanese aged 35-64 y. Clin Nutr 2009;28(5):543-548.
Manu P, Tsang J, Napolitano BA, Lesser ML, Correll CU. Predictors of insulin resistance in the obese with metabolic syndrome. Eur J Intern Med 2010;21(5):409-413.
Departamento Administrativo Nacional de Estadística. Censo General de 2005. Libro Censo General. 1st ed. Bogotá: DANE, 2006.
Altman DG. Practical Statistics for Medical Research. London: Chapman and Hall, 1991:624.
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988;44(3):837-845.
R Development Core Team. R: A language and environment for statistical computing. Viena, Austria: R Foundation for Statistical Computing, 2013.
Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011;12:77.
Plummer M, Carstensen B. An R Class for Epidemiological Studies with Long-Term Follow-Up. J Stat Softw 2011;38(5):1-12.
Royston P, Altman DG. Regression Using Fractional Polynomials of Continuous Covariates: Parsimonious Parametric Modelling. JR Stat Soc Ser C Appl Stat 1994;43(3):429-467.
Benner A. mfp-multivariable fractional polynomials. R News 2005;5:20-23.
Hosmer DW, Hosmer T, Le Cessie S, Lemeshow S. A comparison of goodness-of-fit tests for the logistic regression model. Statistics in medicine 1997;16(9):965-980.
Gus M, Cichelero FT, Moreira CM, Escobar GF, Moreira LB, Wiehe M, et al. Waist circumference cut-off values to predict the incidence of hypertension: an estimation from a Brazilian population-based cohort. Nutr Metab Cardiovasc Dis 2009;19(1):15-19.
Sanchez-Castillo CP, Velazquez-Monroy O, Berber A, Lara-Esqueda A, Tapia-Conyer R, James WP. Anthropometric cutoff points for predicting chronic diseases in the Mexican National Health Survey 2000. Obes Res 2003;11(3):442-451.
Simmons RK, Alberti KG, Gale EA, Colagiuri S, Tuomilehto J, Qiao Q, et al. The metabolic syndrome: useful concept or clinical tool? Report of a WHO Expert Consultation. Diabetologia 2010;53(4):600-605.
Knowles KM, Paiva LL, Sanchez SE, Revilla L, Lopez T, Yasuda MB, et al. Waist Circumference, Body Mass Index, and Other Measures of Adiposity in Predicting Cardiovascular Disease Risk Factors among Peruvian Adults. Int J Hypertens 2011;2011:931402.
Perkins NJ, Schisterman EF. The inconsistency of “optimal” cutpoints obtained using two criteria based on the receiver operating characteristic curve. Am J Epidemiol 2006;163(7):670-675.
Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Statistics in medicine 2006;25(1):127-141.