2013, Number 6
<< Back Next >>
Gac Med Mex 2013; 149 (6)
Involvement of matrix metalloproteinases in acute coronary syndrome (ACS)
Pérez-Hernández N, Ibanes-Gutiérrez C, Vargas-Alarcón G, Martínez-Rodríguez N, Monroy-Muñoz IE, Valente-Acosta B, Pérez-Méndez Ó, Barrera-Ramírez R, Juárez-Cedillo T, Rodríguez PJM
Language: Spanish
References: 120
Page: 655-667
PDF size: 289.01 Kb.
ABSTRACT
Matrix metalloproteinases (MMP) are enzymes that degrade extracellular matrix (ECM) proteins and regulate both their
accumulation and composition. The MMP are involved in the atherosclerotic process since they contribute to the formation
of the plaque and its subsequent rupture. This last step triggers the myocardial ischemia that will be clinically reflected
as an acute coronary syndrome (ACS). Thus, MMP activity is a key to whether ACS develops or not. With an elevated
transcription rate of the genes that codify these proteinases comes a higher enzymatic activity. This explains that if a
polymorphism in the mentioned genes modifies transcription, there could be a predisposition to developing ACS. Several
studies reveal that certain genetic variations in MMP-1, -2, -3, -7, -8, -9, -12, and -14 have an important role either as risk
factors or as protective factors for the expression of ACS.
REFERENCES
Hernández-Leiva E. Epidemiology of acute coronary syndrome and heart failure in Latin America. Rev Esp Cardiol. 2011;64:34-43.
Tyroler HA. Coronary heart disease epidemiology in the 21st century. Epidemiol Rev. 2000;22:7-13.
Newby AC. Dual role of matrix metalloproteinase (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev. 2005; 85:1-31.
Herzog E, Gu A, Kohmoto T, Burkhoff D, Hochman JS. Early activation of metalloproteinases after experimental myocardial infarction occurs in infarct and non-infarct zones. Cardiovasc Pathol. 1998;7:307-12.
Kalela A, Koivu TA, Sisto T, et al. Serum matrix metalloproteinase-9 concentration in angiographically assessed coronary artery disease. Scand J Clin Lab Invest. 2002;62:337-42.
Uzui H, Harpf A, Liu M, et al. Increased expression of membrane type 3-matrix metalloproteinase in human atherosclerotic plaque: role of activated macrophages and inflammatory cytokines. Circulation. 2002;106:3024-30.
Zeng B, Prasan A, Fung KC, et al. Elevated circulating levels of matrix metalloproteinase-9 and -2 in patients with symptomatic coronary artery disease. Intern Med J. 2005;35:331-5.
Ama˘linei C, Ca˘runtu ID, Ba˘lan RA. Biology of metalloproteinases. Rom J Morphol Embryol. 2007;48:323-34.
Brinckerhoff CE, Matrisian LM. Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol. 2002;3:207-14.
Tejido conjuntivo. En: Ross MH, Pawlina W, eds. Histología: Texto y atlas color con biología celular y molecular. 5.a ed. Buenos Aires: Editorial Médica Panamericana; 2009. p. 160-97.
Mora-Solera JR, Manzur Conte AJ, Ramírez-Mora T, Silva-Herzog D. Papel de las metaloproteinasas de la matriz en la degradación del tejido pulpar: Una revisión literaria. Rev Cient Ondontol. 2006;1:20-6.
Butler GS, Overall CM. Updated biological roles for matrix metalloproteinases and new “intracellular” substrates revealed by degradomics. Biochemistry. 2009;48:10830-45.
Folgueras AR, Pendas AM, Sánchez LM, Lopez-Otin C. Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int J Dev Biol. 2004;48:411-24.
Uría JA, Jiménez MG, Balbín M, Freije JM, López-Otín C. Differential effects of transforming growth factor-beta on the expression of collagenase- 1 and collagenase-3 in human fibroblasts. J Biol Chem. 1998;273:9769-77.
Jugdutt BI. Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation. 2003;108: 1395-403.
Guo H, Zucker S, Gordon MK, Toole BP, Biswas C. Stimulation of matrix metalloproteinase production by recombinant extracellular matrix metalloproteinase inducer from transfected Chinese hamster ovary cells. J Biol Chem. 1997;272:24-7.
Sameshima T, Nabeshima K, Toole BP, et al. Glioma cell extracellular matrix metalloproteinase inducer (EMMPRIN) (CD147) stimulates production of membrane-type matrix metalloproteinases and activated gelatinase A in co-cultures with brain-derived fibroblasts. Cancer Lett. 2000;157:177-84.
Piperi C, Papavassiliou AG. Molecular mechanisms regulating matrix metalloproteinases. Curr Top Med Chem. 2012;12:1095-112.
Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta. 2000;1477:267-83.
Corbel M, Boichot E, Lagente V. Role of gelatinases MMP-2 and MMP-9 in tissue remodeling following acute lung injury. Braz J Med Biol Res. 2000;33:749-54.
Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases. Structure, function, and biochemistry. Circ Res. 2003;92:827-39.
Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis. The good, the bad, and the ugly. Circ Res. 2002;90:251-62.
Pardo A, Selman M. MMP-1: the elder of the family. Int J Biochem Cell Biol. 2005;37:283-8.
Miura S, Ohno I, Suzuki J, et al. Inhibition of matrix metalloproteinases prevents cardiac hypertrophy induced by beta-adrenergic stimulation in rats. J Cardiovasc Pharmacol. 2003;42:174-81.
Vincenti MP, Brinckerhoff CE. Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res. 2002;4:157-64.
Nishioka Y, Sagae S, Nishikawa A, Ishioka S, Kudo R. A relationship between matrix metalloproteinase-1 (MMP-1) promoter polymorphism and cervical cancer progression. Cancer Lett. 2003;200:49-55.
Woessner JF, Nagase H. Matrix Metalloproteinases and TIMPs. 1.a ed. Nueva York: Oxford University Press; 2000.
White LA, Mitchel TI, Brincjerhoff CE. Transforming growth factor beta inhibitory element in the rabbit matrix metalloproteinase-1 (collagenase- 1) gene functions as a repressor of constitutive transcription. Biochim Biophys Acta. 2000;1490:259-68.
Suzuki K, Enghild JJ, Morodomi T, Salvesen G, Nagase H. Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin). Biochemistry. 1990;29:10261-70.
Rutter JL, Mitchell TI, Butticè G, et al. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription. Cancer Research. 1998;58:5321-5.
Pearce E, Tregouet DA, Samnegård A, et al. Haplotype effect of the matrix metalloproteinase-1 gene on risk of myocardial infarction. Circ Res. 2005;97:1070-6.
Chaudhary AK, Singh M, Bharti AC, Asotra K, Sundaram S, Mehrotra R. Genetic polymorphisms of matrix metalloproteinases and their inhibitors in potentially malignant and malignant lesions of the head and neck. J Biomed Sci. 2010;17:10.
Price SJ, Greaves DR, Watkins H. Identification of novel, functional genetic variants in the human matrix metalloproteinase-2 gene. J Biol Chem. 2001;276:7549-58.
Cheung PY, Sawicki G, Wozniak M, Wang W, Radomski MW, Schulz R. Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation. 2000;101:1833-9.
Rouet-Benzineb P, Perennec J, Delcourt A, et al. Cardiac gelatinase expression and involvement in human dilated cardiomyopathy. Circulation. 1998;98:I-626.
Qin H, Sun Y, Benveniste EN. The transcription factors Sp1, Sp3, and AP-2 are required for constitutive matrix metalloproteinase-2 gene expression in astroglioma cells. J Biol Chem. 1999;274:29130-7.
Kadonaga JT, Carner KR, Masiarz FR, Tjian R. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell. 1987;51:1079-90.
Turner J, Crossley M. Mammalian Krüppel-like transcription factors: more than just a pretty finger. Trends Biochem Sci. 1999;24:236-40.
Lamblin N, Bauters C, Hermant X, Lablanche JM, Helbecque N, Amouyel P. Polymorphisms in the promoter regions of MMP-2, MMP-3, MMP-9 and MMP-12 genes as determinants of aneurysmal coronary artery disease. J Am Coll Cardiol. 2002;40:43-8.
Armstrong C, Abilleira S, Sitzer M, Markus HS, Bevan S. Polymorphisms in MMP family and TIMP genes and carotid artery intima-media thickness. Stroke. 2007;38:2895-9.
Alp E, Menevse S, Tulmac M, Yilmaz A, Yalcin R, Cengel A. The role of matrix metalloproteinase-2 promoter polymorphisms in coronary artery disease and myocardial infarction. Genet Test Mol Biomarkers. 2011;15:193-202.
Vaskºu A, Goldbergová M, Hollá LI, et al. Two MMP-2 promoter polymorphisms (-790T/G and -735C/T) in chronic heart failure. Clin Chem Lab Med. 2003;41:1299-303.
Pérez-Hernández N, Vargas-Alarcón G, Martínez-Rodríguez N, Martínez- Ríos MA, Peña-Duque MA, Peña-Díaz A. Matrix metalloproteinase 2 -1575 gene polymorphism is associated with the risk of developing myocardial infarction in mexican patients. J Atheroscler Thromb. 2012;19:718-27.
Delgado-Enciso I, González-Hernández NA, Baltazar-Rodríguez LM, et al. Association of matrix metalloproteinase-2 gene promoter polymorphism with myocardial infarction susceptibility in a Mexican population. J Genet. 2009;88:249-52.
Horne BD, Camp NJ, Carlquist JF, et al. Multiple-polymorphism associations of 7 matrix metalloproteinase and tissue inhibitor metalloproteinase genes with myocardial infarction and angiographic coronary artery disease. Am Heart J. 2007;154:751-8.
Samnegård A, Silveira A, Lundman P, et al. Serum matrix metalloproteinase- 3 concentration is influenced by MMP-3 -1612 5A/6A promoter genotype and associated with myocardial infarction. J Intern Med. 2005;258:411-9.
Woessner JF Jr. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 1991;5:2145-54.
Henney AM, Wakeley PR, Davies MJ, et al. Localization of stromelysin gene expression in atherosclerotic plaques by in situ hybridization. Proc Natl Acad Sci USA. 1991;88:8154-8.
Sternlicht MD, Lochter A, Sympson CJ, et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell. 1999;98:137-46.
Buttice G, Quinones S, Kurkinen M. The AP-1 site is required for basal expression but is not necessary for TPA-response of the human stromelysin gene. Nucleic Acids Res. 1991;19:3723-31.
Quinones S, Saus J, Otani Y, Harris ED Jr, Kurkinen M. Transcriptional regulation of human stromelysin. J Biol Chem. 1989;264:8339-44.
Kerr LD, Holt JT, Matrisian LM. Growth factors regulate transin gene expression by c-fos-dependent and c-fos-independent pathways. Science. 1988;242:1424-7.
Imai K, Yokohama Y, Nakanishi I, et al. Matrix metalloproteinase 7 (matrilysin) from human rectal carcinoma cells. Activation of the precursor, interaction with other matrix metalloproteinases and enzymic properties. J Biol Chem. 1995;270:6691-7.
Lu PC, Ye H, Maeda M, Azar DT. Immunolocalization and gene expression of matrilysin during corneal wound healing. Invest Ophthalmol Vis Sci. 1999;40:20-7.
Ye S, Watts GF, Mandalia S, Humphries SE, Henney AM. Preliminary report: genetic variation in the human stromelysin promoter is associated with progression of coronary atherosclerosis. Br Heart J. 1995;73:209-15.
Beyzade S, Zhang S, Wong YK, Day IN, Eriksson P, Ye S. Influences of matrix metalloproteinase-3 gene variation on extent of coronary atherosclerosis and risk of myocardial infarction. J Am Coll Cardiol. 2003;41:2130-7.
Terashima M, Akita H, Kanazawa K, et al. Stromelysin promoter 5A/6A polymorphism is associated with acute myocardial infarction. Circulation. 1999;99:2717-9.
Liu PY, Chen JH, Li YH, Wu HL, Shi GY. Synergistic effect of stromelysin- 1 (matrix metallo-proteinase-3) promoter 5A/6A polymorphism with smoking on the onset of young acute myocardial infarction. Thromb Haemost. 2003;90:132-9.
Humphries SE, Martin S, Cooper J, Miller G. Interaction between smoking and the stromelysin-1 (MMP3) gene 5A/6A promoter polymorphism and risk of coronary heart disease in healthy men. Ann Hum Genet. 2002;66:343-52.
Liu PY, Li YH, Tsai WC, et al. Stromelysin-1 promoter 5A/6A polymorphism is an independent genetic prognostic risk factor and interacts with smoking cessation after index premature myocardial infarction. J Thromb Haemost. 2005;3:1998-2005.
Zhou X, Huang J, Chen J, Su S, Chen R, Gu D. Haplotype analysis of the matrix metalloproteinase 3 gene and myocardial infarction in a Chinese Han population. The Beijing atherosclerosis study. Thromb Haemost. 2004;92:867-73.
Yamada Y, Izawa H, Ichihara S, et al. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes. N Engl J Med. 2002;347:1916-23.
Nojiri T, Morita H, Imai Y, et al. Genetic variations of matrix metalloproteinase- 1 and -3 promoter regions and their associations with susceptibility to myocardial infarction in Japanese. Int J Cardiol. 2003;92:181-6.
Kukaˇcka J, Prºuša R, Kotaška K, Pelouch V. Matrix metalloproteinases and their function in myocardium. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2005;149:225-36.
Quantin B, Murphy G, Breathnach R. Pump-1 cDNA codes for a protein with characteristics similar to those of classical collagenase family members. Biochemistry. 1989;28:5327-34.
Jormsjö S, Whatling C, Walter DH, Zeiher AM, Hamsten A, Eriksson P. Allele-specific regulation of matrix metalloproteinase-7 promoter activity is associated with coronary artery luminal dimensions among hypercholesterolemic patients. Arterioscler Thromb Vasc Biol. 2001;21:1834-9.
Dozier S, Escobar GP, Lindsey ML. Matrix metalloproteinase (MMP)-7 activates MMP-8 but not MMP-13. Med Chem. 2006;2:523-6.
Halpert I, Sires UI, Roby JD, et al. Matrilysin is expressed by lipid-laden macrophages at sites of potential rupture in atherosclerotic lesions and localizes to areas of versican deposition, a proteoglycan substrate for the enzyme. Proc Natl Acad Sci U S A. 1996;93:9748-53.
Shi M, Liu D, Duan H, et al. Catecholamine up-regulates MMP-7 expression by activating AP-1 and STAT3 in gastric cancer. Mol Cancer. 2010;9:269.
Pendas AM, Matilla T, Estivill X, López-Otín C. The human collagenase-3 (CLG-3) gene is located on chromosome 11q22.3 clustered to other members of the matrix metalloproteinase gene family. Genomics. 1995;26:615-8.
Van Lint P, Libert C. Matrix metalloproteinase-8: cleavage can be decisive. Cytokine Growth Factor Rev. 2006;17:217-23.
Alfakry H, Sinisalo J, Paju S, et al. The association of serum neutrophil markers and acute coronary syndrome. Scand J Immunol. 2012;76: 181-7.
Pussinen PJ, Sarna S, Puolakkainen M, Ohlin H, Sorsa T, Pesonen E. The balance of serum matrix metalloproteinase-8 and its tissue inhibitor in acute coronary syndrome and its recurrence. Int J Cardiol. 2013;167(2):362-8.
Pradhan-Palikhe P, Pussinen PJ, Vikatmaa P, et al. Single nucleotide polymorphism -799C/T in matrix metalloproteinase-8 promoter region in arterial disease. Innate Immun. 2012;18:511-7.
Wang WF, Wang F, Zhu M, et al. [Association between matrix metalloproteinase- 8 -799C/T polymorphism and instability of carotid plaque]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2012;29:60-3.
Djuri´c T, Stanko´c A, Konˇcar I, et al. Association of MMP-8 promoter gene polymorphisms with carotid atherosclerosis: preliminary study. Atherosclerosis. 2011;219:673-8.
Laxton RC, Hu Y, Duchene J, et al. A role of matrix metalloproteinase-8 in atherosclerosis. Circ Res. 2009;105:921-9.
Kiechl S, Willeit J. The natural course of atherosclerosis. Part I: incidence and progression. Arterioscler Thromb Vasc Biol. 1999;19:1484-90.
Kiechl S, Willeit J. The natural course of atherosclerosis. Part II: vascular remodeling. Bruneck Study Group. Arterioscler Thromb Vasc Biol. 1999;19:1491-8.
Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev. 2005;85:1-31.
Genersch E, Hayess K, Neuenfeld Y, Haller H. Sustained ERK phosphorylation is necessary but not sufficient for MMP-9 regulation in endothelial cells: involvement of Ras-dependent and -independent pathways. J Cell Sci. 2000;113:4319-30.
Ueda L, Matsushima K. Stimulation of plasminogen activator activity and matrix metalloproteinases of human dental pulp-derived cells by tumor necrosis factor-alpha. J Endod. 2001;27:175-9.
Vaday GG, Schor H, Rahat MA, Lahat N, Lider O. Transforming growth factor-beta suppresses tumor necrosis factor alpha-induced matrix metalloproteinase-9 expression in monocytes. J Leukoc Biol. 2001;69: 613-21.
Brown DL, Hibbs MS, Kearney M, Loushin C, Isner JM. Identification of 92-kD gelatinase in human coronary atherosclerotic lesions. Association of active enzyme synthesis with unstable angina. Circulation. 1995;91:2125-31.
Noji Y, Kajinami K, Kawashiri MA, et al. Circulating matrix metalloproteinases and their inhibitors in premature coronary atherosclerosis. Clin Chem Lab Med. 2001;39:380-4.
Yasmin, McEniery CM, Wallace S, et al. Matrix metalloproteinase-9 (MMP-9), MMP-2, and serum elastase activity are associated with systolic hypertension and arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25:372.
Tayebjee MH, Lip GY, Tan KT, Patel JV, Hughes EA, MacFadyen RJ. Plasma matrix metalloproteinase-9, tissue inhibitor of metalloproteinase- 2, and CD40 ligand levels in patients with stable coronary artery disease. Am J Cardiol. 2005;96:339-45.
Marx N, Froehlich J, Siam L, et al. Antidiabetic PPAR gamma-activator rosiglitazone reduces MMP-9 serum levels in type 2 diabetic patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2003;23: 283-8.
Zhang B, Ye S, Herrmann SM, et al. Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation. 1999;99:1788-94.
Blankenberg S, Rupprecht HJ, Poirier O, et al. Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation. 2003;107:1579-85.
Zhi H, Wang H, Ren L, et al. Functional polymorphisms of matrix metallopeptidase- 9 and risk of coronary artery disease in a Chinese population. Mol Biol Rep. 2010;37:13-20.
Saedi M, Vaisi-Raygani A, Khaghani S, et al. Matrix metalloproteinase-9 functional promoter polymorphism 1562C>T increased risk of early-onset coronary artery disease. Mol Biol Rep. 2012;39:555-62.
Shapiro SD, Kobayashi DK, Ley TJ. Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages. J Biol Chem. 1993;268:23824-9.
Belaaouaj A, Shipley JM, Kobayashi DK, et al. Human macrophage metalloelastase: genomic organization, chromosomal location, gene linkage, and tissue-specific expression. J Biol Chem. 1995;270:14568-75.
Chandler S, Cossins J, Lury J, Wells G. Macrophage metalloelastase degrades matrix and myelin proteins and processes a tumour necrosis factor-alpha fusion protein. Biochem Biophys Res Commun. 1996;228:421-9.
Gronski TJ Jr, Martin RL, Kobayashi DK, et al. Hydrolysis of a broad spectrum of extracellular matrix proteins by human macrophage elastase. J Biol Chem. 1997;272:12189-94.
Rajavashisth TB, Xu XP, Jovinge S, et al. Membrane type 1 matrix metalloproteinase expression in human atherosclerotic plaques: evidence for activation by proinflammatory mediators. Circulation. 1999;99:3103-9.
Souissi IJ, Billiet L, Cuaz-Pérolin C, Slimane MN, Rouis M. Matrix metalloproteinase- 12 gene regulation by a PPAR alpha agonist in human monocyte-derived macrophages. Exp Cell Res. 2008;314:3405-14.
Jormsjö S, Ye S, Moritz J, et al. Allele-specific regulation of matrix metalloproteinase- 12 gene activity is associated with coronary artery luminal dimensions in diabetic patients with manifest coronary artery disease. Circ Res. 2000;86:998-1003.
Tardif G, Reboul P, Pelletier JP, Martel-Pelletier J. Ten years in the life of an enzyme: the story of the human MMP-13 (collagenase-3). Mod Rheumatol. 2004;14:197-204.
Ashworth JL, Murphy G, Rock MJ, et al. Fibrillin degradation by matrix metalloproteinases: implications for connective tissue remodelling. Biochem J. 1999;340:171-81.
Nannuru KC, Futakuchi M, Varney ML, Vincent TM, Marcusson EG, Singh RK. Matrix metalloproteinase (MMP)-13 regulates mammary tumor-induced osteolysis by activating MMP9 and transforming growth factor-beta signaling at the tumor-bone interface. Cancer Res. 2010;70:3494-504.
Mitchell PG, Magna HA, Reeves LM, et al. Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest. 1996;97:761-8.
Vincenti MP, Brinckerhoff CE. Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res. 2002;4:157-64.
Yoon S, Kuivaniemi H, Gatalica Z, et al. MMP13 promoter polymorphism is associated with atherosclerosis in the abdominal aorta of young black males. Matrix Biol. 2002;21:487-98.
McGill HC Jr, McMahan CA, Gidding SS. Preventing heart disease in the 21st century: implications of the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study. Circulation. 2008;117:1216-27.
Hayashi K, Horikoshi S, Osada S, Shofuda K, Shirato I, Tomino Y. Macrophage-derived MT1-MMP and increased MMP-2 activity are associated with glomerular damage in crescentic glomerulonephritis. J Pathol. 2000;191:299-305.
Knäuper V, Will H, López-Otin C, et al. Cellular mechanisms for human procollagenase-3 (MMP-13) activation. Evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme. J Biol Chem. 1996;271:17124-31.
Cao J, Kozarekar P, Pavlaki M, Chiarelli C, Bahou WF, Zucker S. Distinct roles for the catalytic and hemopexin domains of membrane type 1-matrix metalloproteinase in substrate degradation and cell migration. J Biol Chem. 2004;279:14129-39.
Miki T, Takegami Y, Okawa K, Muraguchi T, Noda M, Takahashi C. The reversion-inducing cysteine-rich protein with Kazal motifs (RECK) interacts with membrane type 1 matrix metalloproteinase and CD13/aminopeptidase N and modulates their endocytic pathways. J Biol Chem. 2007;282:12341-52.
Ray BK, Shakya A, Turk JR, Apte SS, Ray A. Induction of the MMP-14 gene in macrophages of the atherosclerotic plaque: role of SAF-1 in the induction process. Circ Res. 2004;95:1082-90.
Massova I, Kotra LP, Fridman R, Mobashery S. Matrix metalloproteinases: structures, evolution, and diversification. FASEB J. 1998;12:1075-95.
Pendás AM, Santamaría I, Alvarez MV, Pritchard M, López-Otín C. Fine physical mapping of the human matrix metalloproteinase genes clustered on chromosome 11q22.3. Genomics. 1996;37:266-8.
Ranganathan AC, Nelson KK, Rodriguez AM, et al. Manganese superoxide dismutase signals matrix metalloproteinase expression via H2O2 – dependent ERK1/2 activation. J Biol Chem. 2001;276:14264-70.
Ye S, Gale CR, Martyn CN. Variation in the Matrix Metalloproteinase-1 gene and risk of coronary heart disease. Eur Heart J. 2003;24:1668-71.
Ye S, Ericksson P, Hamsten A, Kurkinen M, Humphries SE, Henney AM. Progression of coronary atherosclerosis is associated with a common genetic variant of the human stromelysin-1 promoter which results in reduced gene expression. J Biol Chem. 1996;272:13055-60.
Ye S, Whatling C, Watkins H, Henney A. Human stromelysin gen promoter activity is modulated by transcription factor ZBP-89. FEBS Lett. 1999;450:268-72.
Morgan AR, Zhang B, Tapper W, Collins A, Ye S. Haplotype analysis of the MMP-9 gene in relation to coronary artery disease. J Mol Med. 2003;81:321-6.
Pöllänen PJ, Karhunen PJ, Mikkelson J, et al. Coronary artery complicated lesion area is related to functional polymorphism of matrix metalloproteinase 9 gene: an autopsy study. Arterioscler Thromb Vasc Biol. 2001;21:1446-50.
Jones GT, Phillips VL, Harris EL, Rossaak J, van Rij AM. Functional matrix metalloproteinase-9 polymorphism (C-1562T) associated with abdominal aortic aneurism. J Vasc Surg. 2003;38:1363-7.