2005, Number 3
<< Back Next >>
Arch Cardiol Mex 2005; 75 (3)
Role of the transcription factor NF-κB in the cardiac cell
Hernández GS, Rojas DE
Language: Spanish
References: 36
Page: 363-370
PDF size: 254.54 Kb.
ABSTRACT
The signaling pathways that control the life-death switch of a cell are a prime interest in Modern Biology. To this respect, NF-κB has emerged as a decisive transcription factor in the cell’s response to apoptotic challenge and its effects on apoptosis have far-reaching consequences for normal development and/or homeostasis in many cells and tissues, including the immune system, hair follicles, and epidermal appendages, the liver, and nervous system. In this review we analyze the pivotal role of the transcription factor NF-κB in the normal functioning of the cardiac cell and its implication on some of the most frequent cardiac pathologies, such as ischemia-reperfusion injury, ischemic precondition, hypertrophy, atherosclerosis and cardiac arrest. While NF-κB is commonly found to be cytoprotective, there are a number of instances where it is proapoptotic depending on the inducing stimulus and the cell context. Significant progress has been made in understanding its mode of action and its interplay with other key factors. These studies identified many anti- and pro-apoptotic NF-κB regulated genes that mediate its activity, these important new insights fuel hope that novel approaches will be developed to control the effects of NF-κB in cardiac pathologies.
(Arch Cardiol Mex 2005; 75: 363-370)
REFERENCES
Valen G, Yan Z, Hansson G: Nuclear Factor Kappa-B and the Heart. J Am Coll Cardiol 2001; 38(2): 307-314.
Sen R, Baltimore D: Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 1986; 47(6): 921-928.
Baldwin AS: The NF-kB and IkB proteins: new discoveries and insights. Annu Rev Immunol 1996; 14: 649-681.
Miyamoto S, Verma IM: Rel/NF-kappa B/I kappa B story. Adv Cancer Res 1995; 66: 255-292.
Ballard DW, Dixon EP, Peffer NJ, Bogerd H, Doerre S, Stein B, et al: The 65-kDa subunit of human NF-kappa B functions as a potent transcriptional activator and a target for v-Rel-mediated repression. PNAS 1992; 89(5): 1875-1879.
Chen F, Castranova V, Shi X, Demers LM: New insights into the role of nuclear factor-kappaB, a ubiquitous transcription factor in the initiation of diseases. Clin Chem 1999; 45(1): 7-17.
Ghosh S, May MJ, Kopp EB: NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 1998; 16: 225-260.
Baeuerle PA, Henkel T: Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 1994; 12: 141-179.
Bours V, Bonizzi G, Bentires-Alj M, Bureau F, Piette J, Lekeux P, et al: NF-kappaB activation in response to toxical and therapeutical agents: role in inflammation and cancer treatment. Toxicol 2000; 153(1-3): 27-38.
Barnes PJ, Adcock IM: NF-kappa B: a pivotal role in asthma and a new target for therapy. Trends Pharmacol Sci 1997; 18(2): 46-50.
Thurberg BL, Collins T: The nuclear factor-kappa B/inhibitor of kappa B autoregulatory system and atherosclerosis. Curr Opin Lipidol 1998; 9(5): 387-396.
Craig R, Wagner M, McCardle T, Craig AG, Glembotski CC: The cytoprotective effects of the glycoprotein 130 receptor-coupled cytokine, cardiotrophin-1, require activation of NF-kappa B. J Biol Chem 2001; 276(40): 37621-37629.
Mustapha S, Kirshner A, De Moissac D, Kirshenbaum L: A direct requirement of nuclear factor kB for suppression of apoptosis in ventricular myocytes. Am J Physiol Heart Circ Physiol 2000; 279: H939-H945.
Bergmann MW, Loser P, Dietz R, Harsdorf R: Effect of NF-kB inhibition on TNFa induced apoptosis and downstream pathway in cardiomyocytes. J Mol Cell Cardiol 2001; 33: 1223-1232.
De Moissac D, Sheng H, Kirshembaum L. A: Linkage of the BH4 domain of Bcl-2 and the Nuclear Factor kB signaling pathway suppression of apoptosis. J Biol Chem 1999; 274 (41): 29505-29509.
Purcell N, Tang G, Yu C, Mercurio F, DiDonato J, Lin A: Activation of NF-kB is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. PNAS 2001; 98(12): 6668-6673.
Higuchi Y, Otsu K, Nishida K, Hirotani S, Nakayama H, Yamaguchi O, et al: Involvement of reactive oxygen species-mediated NF-kappa B activation in TNF-alpha-induced cardiomyocyte hypertrophy. J Mol Cell Cardiol 2002; 34(2): 233-240.
Li C, Browder W, Kao RL: Early activation of transcription factor NF-kB during ischemia in perfused rat heart. Am J Physiol 1999; 276: H543-H552.
Chandrasekar B, Freeman GL: Induction of nuclear factor kB and activation protein-1 in postischemic myocardium. FEBS Lett 1997; 401: 30-34.
Shimizu N, Yoshiyama M, Omura T, Hanatani A, Kim S, Takeuchi K: Activation of mitogen activated protein kinases and activator protein-1 in myocardial infarction in rats. Cardiovasc Res 1998; 38: 116-124.
Sun B, Fan H, Honda T, Fujimaki R, Lafond-Walker A, Masui Y, et al: Activation of NF kappa B and expression of ICAM-1 in ischemic-reperfused canine myocardium. J Mol Cell Cardiol 2001; 33(1): 109-119.
Morgan E, Boyle E, Yun W, Griscavage-Ennis J, Farr AL, Canty T, et al: An essential role for NF-kappaB in the cardioadaptive response to ischemia. Ann Thorac Surg 1999; 68(2): 377-382.
Pye J, Ardeshirpour F, McCain A, Bellinger DA, Merricks E, Adams J, et al: Proteasome inhibition ablates activation of NF-kappa B in myocardial reperfusion and reduces reperfusion injury. Am J Physiol Heart Circ Physiol 2002; 284(3): H919-H926.
Yamasaki K, Asai T, Shimizu M, Aoki M, Hashiya N, Sakonjo H, et al: Inhibition of NFkappaB activation using cis-element decoy of NFkappaB binding site reduces neointimal formation in porcine balloon-injured coronary artery model. Gene Ther 2003; 10(4): 356-364.
Feeley BT, Miniati D, Park AK, Hoyt EG, Robins RC: Nuclear factor-KappaB transcription factor decoy treatment inhibits graft coronary artery disease after cardiac transplantation in rodents. Transplant 2000; 15: 70(11): 1560-1568.
Maulik N, Sato M, Price BD, Das DK: An essential role of NFkappaB in tyrosine kinase signaling of p38 MAP kinase regulation of myocardial adaptation to ischemia. FEBS Lett 1998; 16: 429(3): 365-369.
Meldrum DR: Mechanisms of cardiac preconditioning: ten years after the discovery of ischemic preconditioning. J Surg Res 1997; 73(1): 1-13.
Tahepold P, Vaage J, Starkopf J, Valen G: Hyperoxia elicits myocardial protection through a nuclear factor kappaB-dependent mechanism in the rat heart. J Thorac Cardiovasc Surg 2003; 125(3): 650-660.
Morgan HE, Gordon E, Kira E, Chua B, Russo L, Peterson CJ, et al: Biochemical mechanisms of cardiac hypertrophy. Annu Rev Physiol 1987; 49: 533-543.
Chien KR, Knowlton KU, Zhu H, Chien S: Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J 1991; 5: 3037-3046.
Brand K, Page S, Rogier G, Bartsh A, Brand R, Knuechel R: Actived transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion. J Clin Invest 1996; 97(7): 1715-1722.
Collins T, Cybulsky MI: NF-kappaB: pivotal mediator or innocent bystander in atherogenesis? J Clin Invest 2001; 107(3): 255-264.
Ross R: The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993: 362: 801-808.
Brand K, Page S, Walli AK, Neumeier D, Baeuerle PA: Role of nuclear factor-kappa B in atherogenesis. Exp Physiol 1997; 82(2): 297-304.
Frantz S, Fraccarollo D, Wagner H, Behr TM, Jung P, Angermann CE, et al: Sustained activation of nuclear factor kappa B and activator protein 1 in chronic heart failure. Cardiovasc Res 2003; 57(3): 749-756.
Steenbergen C, Afshari C, Petranka J, Collins J, Martin K, Bennett L, et al: Alteration in apoptotic signalling in human idiopathic cardiomyopathic hearts in failure. Am J Phisiol Heart Circ Physiol 2003: 284: H266-H276.