2013, Number 4
<< Back Next >>
Rev Invest Clin 2013; 65 (4)
Inhibitory proteins of the neuritic regeneration in the extracellular matrix: structure, molecular interactions and their functions. Mechanisms of extracellular balance
Vargas J, Uribe-Escamilla R, Alfaro-Rodríguez A
Language: Spanish
References: 103
Page: 336-348
PDF size: 330.50 Kb.
ABSTRACT
After a central nervous system (CNS) injury of the higher
vertebrates, the neurons do not grow or properly reconnected
with their targets because their axons or dendrites cannot regenerate
in the site of the injury. In the CNS, the environment
signal which regulates neuritic regeneration not is
generated exclusively by a molecular group. This signal
is generated by the interaction of several molecular types such
as proteins of the extracellular matrix, soluble factors and
molecules of the membrane; all these elements interacting
each with others, generate the biological conditions of the
matrix: the extracellular balance. The extracellular matrix
proteins on balance, give support and physiological state of
the cell, including the neuritic regeneration. The function
of three types of inhibitory proteins at the extracellular matrix
which are determinants of neuritic regeneration failure of
CNS is considered in this work: the chondroitin sulfate proteoglycans,
the proteoglycans with keratan sulfate and the tenascin;
is also reviewed some of the mechanisms that
produce the extracellular proteins balance: the isomerization,
epimerization, sulfation and glycosylation, as well as
the assembly of the extracellular matrix, the interactions
between the matrix with soluble factors and the proteolytic
degradation. At the last part, are presented examples of
the role of the matrix in the development and spread of some
tumors.
REFERENCES
Funderburgh J. Keratan sulfate: structure, biosynthesis, and function. Glycobiology 2000; 10: 951-8.
Hsia H, Schwarzbauer J. Meet the tenascins: multifunctional and mysterious. J Biol Chem 2005; 280: 26641-4.
Nuwayhid N, Glaser JH, Johnson JC, Conrad HE, Hauser SC, Hirschberg CB. Xylosylation and glucuronosylation reactions in rat liver Golgi apparatus and endoplasmic reticulum. J Biol Chem 1986; 261(28): 12936-41.
Taniguchi N. Experimental glycoscience. Glycobiology [Internet]. Tokyo; New York: Springer; 2008. Available from: http:/ /site.ebrary.com/id/10284555 [cited 2012 Aug 30].
Akatsu C, Mizumoto S, Kaneiwa T, et al. Dermatan sulfate epimerase 2 is the predominant isozyme in the formation of the chondroitin sulfate/dermatan sulfate hybrid structure in postnatal developing mouse brain. Glycobiology 2011; 21: 565-74.
Gama C, Tully S, Sotogaku N, et al. Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nat Chem Biol 2006; 2: 467-73.
Zimmermann D, Ruoslahti E. Multiple domains of the large fibroblast proteoglycan, versican. EMBO J 1989; 8: 2975-81.
Montreuil J. Glycoprotein structure and conformation: An Overview. On Vebert A (ed.). Methods on glycoconjugates. Lille, Francia: Harwood Academic Publishers; 1995.
Chiquet-Ehrismann R. Tenascins. Int J Biochem Cell Biol 2004; 36(6): 986-90.
Prydz K, Dalen K. Synthesis and sorting of proteoglycans. IUBMB Life 2000; 113: 193-205.
Sugahara K, Mikami T. Chondroitin/dermatan sulfate in the central nervous system. Curr Opin Struct Biol 2007; 17: 536-45.
Thelin M, Svensson K, Shi X, et al. Dermatan sulfate is involved in the tumorigenic properties of esophagus squamous cell carcinoma. Cancer Res 2012; 72: 1943-52.
Robinson SD, Reynolds LE, Kostourou V, et al. αvβ3 Integrin Limits the Contribution of Neuropilin-1 to Vascular Endothelial Growth Factor-induced Angiogenesis. J Biol Chem 2009; 284: 33966-81.
Conrad AH, Zhang Y, Tasheva ES, Conrad GW. Proteomic Analysis of Potential Keratan Sulfate, Chondroitin Sulfate A, and Hyaluronic Acid Molecular Interactions. Invest Ophthalmol Vis Sci 2010; 51: 4500-15.
Baron-Van EA, Kleinman H, Ohno S, Marangos P, Schwartz J, Dubois-Dalcq M. Nerve growth factor, laminin, and fibronectin promote neurite growth in human fetal sensory ganglia cultures. J Neurosci Res 1982; 8: 179-93.
To W, Midwood K. Identification of novel and distinct binding sites within tenascin-C for soluble and fibrillar fibronectin. J Biol Chem 2011; 286: 14881-91.
Chiquet-Ehrismann R, Kalla P, Pearson C, Beck K, Chiquet M. Tenascin interferes with fibronectin action. Cell 1988; 53: 383-90.
Brellier F. The Adhesion Modulating Properties of Tenascin- W. Int J Biol Sci 2012; 8: 187-94.
Milev P, Fischer D, Häring M, et al. The fibrinogen-like globe of tenascin-C mediates its interactions with neurocan and phosphacan/ protein-tyrosine phosphatase-zeta/beta. J Biol Chem 1997; 272: 15501-09.
Swindle CS, Tran KT, Johnson TD, et al. Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor. J Cell Biol 2001; 154: 459-68.
Busch S, Silver J. The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 2007; 17: 120-7.
Bartus K, James N, Bosch K, Bradbury E. Chondroitin sulphate proteoglycans: key modulators of spinal cord and brain plasticity. Exp Neurol 2012; 235: 5-17.
McKeon R, Schreiber R, Rudge J, Silver J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci 1991; 11: 3398-411.
Kwok JCF, Afshari F, García-Alías G, Fawcett JW. Proteoglycans in the central nervous system: plasticity, regeneration and their stimulation with chondroitinase ABC. Restor Neurol Neurosci 2008; 26(2-3): 131-45.
Tauchi R, Imagama S, Natori T, et al. The endogenous proteoglycan- degrading enzyme ADAMTS-4 promotes functional recovery after spinal cord injury. J Neuroinflammation 2012; 9: 53.
Dutt S, Cassoly E, Dours-Zimmermann MT, Matasci M, Stoeckli ET, Zimmermann DR. Versican V0 and V1 direct the growth of peripheral axons in the developing chick hindlimb. J Neurosci 2011; 31(14): 5262-70.
Sheng W, Wang G, La Pierre DP, et al. Versican Mediates Mesenchymal- Epithelial Transition. Mol Biol Cell 2006; 17: 2009-20.
Landolt R, Vaughan L, Winterhalter K, Zimmermann D. Versican is selectively expressed in embryonic tissues that act as barriers to neural crest cell migration and axon outgrowth. Development 1995; 121: 2303-12.
Dours-Zimmermann M, Maurer K, Rauch U, Stoffel W, Fässler R, Zimmermann D. Versican V2 assembles the extracellular matrix surrounding the nodes of ranvier in the CNS. J Neurosci 2009; 29: 7731-42.
Imagama S, Sakamoto K, Tauchi R, et al. Keratan sulfate restricts neural plasticity after spinal cord injury. J Neurosci 2011; 31: 17091-102.
Iozzo R. The family of the small leucine-rich proteoglycans: key regulators of matrix assembly and cellular growth. Crit Rev Biochem Mol Biol 1997; 32: 141-74.
Zhang Y, Conrad A, Conrad G. Effects of ultraviolet-A and riboflavin on the interaction of collagen and proteoglycans during corneal cross-linking. J Biol Chem 2011; 286: 13011-22.
Seomun Y, Joo C. Lumican induces human corneal epithelial cell migration and integrin expression via ERK 1/2 signaling. Biochem Biophys Res Commun 2008; 372: 221-5.
Lee S, Bowrin K, Hamad A, Chakravarti S. Extracellular Matrix Lumican Deposited on the Surface of Neutrophils Promotes Migration by Binding to β2 Integrin. J Biol Chem 2009; 284: 23662-9.
Hayashi Y, Call M, Chikama T, et al. Lumican is required for neutrophil extravasation following corneal injury and wound healing. J Cell Sci 2010; 123: 2987-95.
Faissner A, Kruse J. J1/tenascin is a repulsive substrate for central nervous system neurons. Neuron 1990; 5: 627-37.
Ito Z, Sakamoto K, Imagama S, et al. N-acetylglucosamine 6- O-sulfotransferase-1-deficient mice show better functional recovery after spinal cord injury. J Neurosci 2010; 30(17): 5937-47.
Vargas J, De-Miguel FF. Growth-inhibiting extracellular matrix proteins also inhibit electrical activity by reducing calcium and increasing potassium conductances. Neuroscience 2009; 158(2): 592-601.
Lochter A, Vaughan L, Kaplony A, Prochiantz A, Schachner M, Faissner A. J1/tenascin in substrate-bound and soluble form displays contrary effects on neurite outgrowth. J Cell Biol 1991; 113(5): 1159-71.
Zacharias U, Rauch U. Competition and cooperation between tenascin-R, lecticans and contactin 1 regulate neurite growth and morphology. J Cell Sci 2006; 119: 3456-66.
Chen J, Joon LH, Jakovcevski I, et al. The extracellular matrix glycoprotein tenascin-C is beneficial for spinal cord regeneration. Mol Ther 2010; 18: 1769-77.
Liao H, Bu W, Wang T, Ahmed S, Xiao Z. Tenascin-R plays a role in neuroprotection via its distinct domains that coordinate to modulate the microglia function. J Biol Chem 2005; 280: 8316-23.
Besser M, Jagatheaswaran M, Reinhard J, Schaffelke P, Faissner A. Tenascin C regulates proliferation and differentiation processes during embryonic retinogenesis and modulates the de-differentiation capacity of Müller glia by influencing growth factor responsiveness and the extracellular matrix compartment. Dev Biol 2012; 369(2): 163-76.
Garcion E, Faissner A, French-Constant C. Knockout mice reveal a contribution of the extracellular matrix molecule tenascin- C to neural precursor proliferation and migration. Development 2001; 128(13): 2485-96.
Steindler DA, Settles D, Erickson HP, et al. Tenascin knockout mice: barrels, boundary molecules, and glial scars. J Neurosci 1995; 15(3 Pt. 1): 1971–83.
Forsberg E, Hirsch E, Fröhlich L, et al. Skin wounds and severed nerves heal normally in mice lacking tenascin-C. Proc Natl Acad Sci USA 1996; 93(13): 6594-9.
Brellier F, Martina E, Chiquet M, et al. The adhesion modulating properties of tenascin-W. Int J Biol Sci 2012; 8(2): 187-94.
Asher R, Morgenstern D, Shearer M, Adcock K, Pesheva P, Fawcett J. Versican is upregulated in CNS injury and is a product of oligodendrocyte lineage cells. J Neurosci 2002; 22: 2225-36.
Sheng W, Wang G, Wang Y, et al. The Roles of Versican V1 and V2 Isoforms in Cell Proliferation and Apoptosis. Mol Biol Cell 2005; 16: 1330-40.
Wu Y, Sheng W, Chen L, et al. Versican V1 Isoform Induces Neuronal Differentiation and Promotes Neurite Outgrowth. Mol Biol Cell 2004; 15: 2093-104.
Wu Y, Sheng W, Dong H, et al. Versican isoforms modulate expression and function of nicotinic acetylcholine receptors. Int J Physiol Pathophysiol Pharmacol 2009; 1(1): 64-75.
Norian J, Malik M, Parker C, et al. Transforming growth factor beta3 regulates the versican variants in the extracellular matrixrich uterine leiomyomas. Reprod Sci 2009; 16: 1153-64.
Bradbury E, Moon L, Popat R, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 2002; 416: 636-40.
Nandini C, Itoh N, Sugahara K. Novel 70-kDa chondroitin sulfate/ dermatan sulfate hybrid chains with a unique heterogeneous sulfation pattern from shark skin, which exhibit neuritogenic activity and binding activities for growth factors and neurotrophic factors. J Biol Chem 2005; 280: 4058-69.
Bao X, Nishimura S, Mikami T, Yamada S, Itoh N, Sugahara K. Chondroitin sulfate/dermatan sulfate hybrid chains from embryonic pig brain, which contain a higher proportion of Liduronic acid than those from adult pig brain, exhibit neuritogenic and growth factor binding activities. J Biol Chem 2004; 279: 9765-76.
Hashiguchi T, Mizumoto S, Yamada S, Sugahara K. Analysis of the structure and neuritogenic activity of chondroitin sulfate/ dermatan sulfate hybrid chains from porcine fetal membranes. Glycoconj J 2010; 27(1): 49–60.
Pacheco B, Malmstrom A, Maccarana M. Two Dermatan Sulfate Epimerases Form Iduronic Acid Domains in Dermatan Sulfate. J Biol Chem 2009; 284(15): 9788-95.
Maccarana M, Kalamajski S, Kongsgaard M, Magnusson SP, Oldberg A, Malmström A. Dermatan sulfate epimerase 1-deficient mice have reduced content and changed distribution of iduronic acids in dermatan sulfate and an altered collagen structure in skin. Mol Cell Biol 2009; 29(20): 5517-28.
Karus M, Samtleben S, Busse C, et al. Normal Sulphation levels regulate spinal cord neural precursor cell proliferation and differentiation. Neural Development 2012; 7(1): 20.
Wang H, Yasuhiro K, McCann TE, et al. Chondroitin-4-sulfation negatively regulates axonal guidance and growth. J Cell Sci 2008; 121: 3083-91.
Brown J, Xia J, Zhuang B, et al. A sulfated carbohydrate epitope inhibits axon regeneration after injury. Proc Natl Acad Sci USA 2012; 109: 4768-73.
Shental-Bechor D, Levy Y. Effect of glycosylation on protein folding: A close look at thermodynamic stabilization. Proc Natl Acad Sci U S A 2008; 105(24): 8256-61.
McKeon R, Höke A, Silver J. Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp Neurol 1995; 136: 32-43.
Mikami T, Yasunaga D, Kitagawa H. Contactin-1 is a functional receptor for neuroregulatory chondroitin sulfate-E. J Biol Chem 2009; 284: 4494-9.
Coles C, Shen Y, Tenney A, et al. Proteoglycan-specific molecular switch for RPTPó clustering and neuronal extension. Science 2011; 332: 484-8.
Yamaguchi Y, Mann D, Ruoslahti E. Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature 1990; 346: 281-4.
Bespalov MM, Sidorova YA, Tumova S, et al. Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin. J Cell Biol 2011; 192: 153-69.
Kittaka D, Itoh M, Ohmi Y, et al. Impaired hypoglossal nerve regeneration in mutant mice lacking complex gangliosides: down-regulation of neurotrophic factors and receptors as possible mechanisms. Glycobiology 2008; 18(7): 509-16.
Diao J, Tajkhorshid E. Indirect Role of Ca2+ in the Assembly of Extracellular Matrix Proteins. Biophys J 2008; 95(1): 120-7.
Asher R, Morgenstern D, Fidler P, et al. Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J Neurosci 2000; 20: 2427-38.
Jones LL, Sajed D, Tuszynski MH. Axonal Regeneration through Regions of Chondroitin Sulfate Proteoglycan Deposition after Spinal Cord Injury: A Balance of Permissiveness and Inhibition. J Neurosci 2003; 23: 9276-88.
Davies J, Tang X, Denning J, Archibald S, Davies S. Decorin suppresses neurocan, brevican, phosphacan and NG2 expression and promotes axon growth across adult rat spinal cord injuries. Eur J Neurosci 2004; 19: 1226-42.
Minor K, Tang X, Kahrilas G, Archibald S, Davies J, Davies S. Decorin promotes robust axon growth on inhibitory CSPGs and myelin via a direct effect on neurons. Neurobiol Dis 2008; 32: 88-95.
Cao X, Shoichet M. Investigating the synergistic effect of combined neurotrophic factor concentration gradients to guide axonal growth. Neuroscience 2003; 122: 381-9.
Achyuta A, Cieri R, Unger K, Murthy S. Synergistic effect of immobilized laminin and nerve growth factor on PC12 neurite outgrowth. Biotechnol Prog 2009; 25: 227-34.
Penc SF, Pomahac B, Dorschner RA, et al. Dermatan Sulfate Released after Injury Is a Potent Promoter of Fibroblast Growth Factor-2 Function. J Biol Chem 1998; 273: 28116-21.
Schultz G, Wysocki A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen 2009; 17: 153-62.
Overall C, Wrana J, Sodek J. Independent regulation of collagenase, 72-kDa progelatinase, and metalloendoproteinase inhibitor expression in human fibroblasts by transforming growth factor-beta. J Biol Chem 1989; 264: 1860-9.
Crockett MJ, Clark L, Tabibnia G, Lieberman MD, Robbins TW. Serotonin modulates behavioral reactions to unfairness. Science 2008; 320(5884): 1739.
Crockett MJ, Clark L, Robbins TW. Reconciling the role of serotonin in behavioral inhibition and aversion: acute tryptophan depletion abolishes punishment-induced inhibition in humans. J Neurosci 2009; 29(38): 11993-9.
Monti JM. Serotonin control of sleep-wake behavior. Sleep Med Rev 2011; 15(4): 269-81.
Azmitia EC. Serotonin and brain: evolution, neuroplasticity, and homeostasis. Int Rev Neurobiol 2007; 77: 31-56.
Moiseiwitsch J, Lauder J. Regulation of gene expression in cultured embryonic mouse mandibular mesenchyme by serotonin antagonists. Anat Embryol (Berl) 1997; 195: 71-8.
Dees C, Akhmetshina A, Zerr P, et al. Platelet-derived serotonin links vascular disease and tissue fibrosis. J Exp Med 2011; 208: 961-72.
Li X, Wang H, Yang C, Zhang X, Han D, Wang H. Fluoxetine inhibited extracellular matrix of pulmonary artery and inflammation of lungs in monocrotaline-treated rats. Acta Pharmacol Sin 2011; 32: 217-22.
Passaretti T, Wilcox B, Jeffrey J. Serotonin regulation of gene expression in uterine extracellular matrix: reciprocal effects on collagens and collagenase. Mol Cell Endocrinol 1996; 120: 125-32.
Shi F, Sottile J. MT1-MMP regulates the turnover and endocytosis of extracellular matrix fibronectin. J Cell Sci 2011; 124(Pt. 23): 4039-50.
Hu B, Kong LL, Matthews RT, Viapiano MS. The Proteoglycan Brevican Binds to Fibronectin after Proteolytic Cleavage and Promotes Glioma Cell Motility. J Biol Chem 2008; 283: 24848-59.
Tran K, Lamb P, Deng J. Matrikines and matricryptins: Implications for cutaneous cancers and skin repair. J Dermatol Sci 2005; 40: 11-20.
Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson W, Quaranta V. Induction of cell migration by matrix metalloprotease- 2 cleavage of laminin-5. Science 1997; 277: 225-8.
Tremble P, Chiquet-Ehrismann R, Werb Z. The extracellular matrix ligands fibronectin and tenascin collaborate in regulating collagenase gene expression in fibroblasts. Mol Biol Cell 1994; 5(4): 439–53.
Hamel MG, Ajmo JM, Leonardo CC, Zuo F, Sandy JD, Gottschall PE. Multimodal signaling by the ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs) promotes neurite extension. Exp Neurol 2008; 210(2): 428-40.
Zent R, Pozzi A. Cell-extracellular matrix interactions in cancer. New York: Springer; 2010. Available from: http:// dx.doi.org/10.1007/978-1-4419-0814-8 [Cited 2012 September 27].
Varga I, Hutóczki G, Szemcsák CD, et al. Brevican, neurocan, tenascin-C and versican are mainly responsible for the invasiveness of low-grade astrocytoma. Pathol Oncol Res 2012; 18(2): 413-20.
Oskarsson T, Acharyya S, Zhang XH-F, et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 2011; 17(7): 867-74.
Huang W, Chiquet-Ehrismann R, Moyano JV, Garcia-Pardo A, Orend G. Interference of tenascin-C with syndecan-4 binding to fibronectin blocks cell adhesion and stimulates tumor cell proliferation. Cancer Res 2001; 61(23): 8586–94.
Yang Y, Yaccoby S, Liu W, et al. Soluble syndecan-1 promotes growth of myeloma tumors in vivo. Blood 2002; 100(2): 610-07.
Viapiano MS, Hockfield S, Matthews RT. BEHAB/brevican requires ADAMTS-mediated proteolytic cleavage to promote glioma invasion. J Neurooncol 2008; 88(3): 261-72.
Nutt CL, Matthews RT, Hockfield S. Glial tumor invasion: a role for the upregulation and cleavage of BEHAB/brevican. Neuroscientist 2001; 7(2): 113-22.
Connolly EC, Freimuth J, Akhurst RJ. Complexities of TGF-β targeted cancer therapy. Int J Biol Sci 2012; 8(7): 964-78.
Massagué J. TGFb in Cancer. Cell 2008; 134(2): 215-30.
Merline R, Moreth K, Beckmann J, et al. Signaling by the Matrix Proteoglycan Decorin Controls Inflammation and Cancer Through PDCD4 and MicroRNA-21. Sci Signal 2011; 4(199): ra75-ra75.
Sanford SD, Gatlin JC, Hökfelt T, Pfenninger KH. Growth cone responses to growth and chemotropic factors. Eur J Neurosci 2008; 28(2): 268-78.