2011, Number 1
<< Back Next >>
Rev Cubana Plant Med 2011; 16 (1)
Phytosterols and squalene as hypocholesterolemic substances in five varieties of Cucurbita maxima and Cucurbita moschata (pumpkin) seeds
Martínez AY, Martínez YO, Córdova LJ, Valdivié NM, Estarrón EM
Language: Spanish
References: 30
Page: 72-81
PDF size: 64.06 Kb.
ABSTRACT
Introduction: the pumpkin seed has been studied and used in the treatment of
parasitic diseases, benign prostatic hypertrophy, cystitis and as hypoglycemic
substance. However, the research concerning the use of pumpkin seeds and
especially the sterols and squalene as hypocholesterolemic elements in humans is
unknown.
Objective: to determine the phytosterol and squalene content of five varieties of
pumpkin seeds for their potential use as hypocholesterolemic compounds in
humans.
Methods: the pumpkin seeds from two species called
Cucurbita maxima and
Cucurbita moschata from Cuba and Mexico were studied. The varieties were Fifi,
Marucha, INIVIT C-88 (Cuban), Tapatía and Chata (Mexican) for which the profile of
phytosterols (beta-sitosterol, campesterol, stigmasterol and stigmastenol) and the
squalene were determined using gas-liquid chromatography.
Results: the content of ethereal extract and real fat in the seeds ranged 331.5 to
346, and 307 to 336 g/kg, respectively. The variety Fifi (C. moschata) had the
highest content of unsaponifiable material (35.0 g/kg) and showed significant
differences (p< 0.001) compared with other varieties and above that of
conventional oilseeds. The squalene, and beta-sitosterol concentration was higher
Marucha (
Cucurbita moschata) (40.27 and 202.59 mg/100 g), indicating significant
differences (p< 0.001) compared with other varieties. Marucha and Chata varieties
exhibited the highest campesterol content (50.08 and 49.31 mg/100 g,
respectively), and the Marucha evidenced the largest concentration of stigmasterol
and stigmastenol (1.75 and 28.63 mg/100 g); additionally, the amounts contained
were above those of the common vegetable food in the diet.
Conclusions: the results in phytosterol and squalene concentrations achieved in
the studied varieties suggested that the pumpkin seeds be studied as a possible
hypocholesterolemic substance for humans.
REFERENCES
Martínez Y, Valdivié M, La O A, Leyva E. Potencialidades de la semilla de calabaza como alimento para monogástricos. ACPA. 2008;4:20-3.
Carbin B, Larsson B, Lindahl O. Treatment of benign prostatic hyperplasia with phytosterols. Brit J Urol. 1990;66:639-41.
Martínez Y. Caracterización química de la harina de semilla de calabaza y su empleo de la alimentación de gallinas ponedoras y pollos de ceba [Tesis presentada en opción al Título de Doctor Ciencias Veterinarias]. Habana, Cuba; 2009.
Bellma Menéndez A, Tillán Capó J, Menéndez Castillo RA, López González O, Carrillo Domínguez C, González Sanabria ML. Evaluación del extracto lipofílico de Cucurbita pepo L. sobre la hiperplasia prostática inducida por andrógenos. Rev Cubana Plant Med [serie en Internet]. 2006[citado 25 Mar 2009];11(2). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S102847962006000200006& lng=es&nrm=is
López OD, Márquez C, Salomón S, González ML. Extracción de lípidos de las semillas de Cucurbita pepo L. (calabaza). Rev Cubana Plant Med [serie en Internet]. 2009 Jun [citado 31 Ago 2010];14(2). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028- 47962009000200005&lng=es
Tillán Capó JI, Bellma Menéndez A, Menéndez Castillo R, Carrillo Domínguez C. Actividad antagonista alfa-adrenérgica del aceite de semillas de Cucurbita pepo L. (calabaza) microencapsulado. Rev Cubana Plant Med [serie en Internet]. 2009 [citado 31 Ago 2010];14(3): 37-44. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028- 47962009000300006&lng=es
Kerise A, Maxine D, Teran C, Gardner M, Simon O. Influence of Pumpkin Seed Oil Supplementation on cardiovascular and Histological Outcomes in Female Nonovariectomized and Ovariectomized Rats. The FASEB Journal. 2008;22:719-31.
Katan MB. Nutritional interventions: The evidence. Proc Nutr Soc. 2000;59:417- 8.
Palou A, Picó C, Bonet A, Oliver P, Serra F, Rodríguez A, et al. El libro blanco de los esteroles vegetales. Barcelona, España: Editorial Unilever Foods; 2005.
Sabeena F, Anandan R, Senthil K, Shiny S, Sankar S, Thankappan TK. Effect of squalene on tissue defense system in isoproterenolinduced myocardial infarction in rats. Pharmacol Res. 2004;50:231-6.
AOAC. Official methods of analysis. Washington. D.C. (USA): Editorial Ass. Off. Agric. Chem, 16th; 1995.
NMX-F-490-Alimentos, aceites, grasas. Determinación de la composición de ácidos grasos a partir de los C6 por cromatografía de gases. Ciudad México (México): Editorial NORMEX; 1999. p. 4-10.
Giacometti J. Determination of aliphatic alcohols, squalene, a-tocopherol and sterols in olive oils: direct method involving gaschromatography of the unsaponifiable fraction following silylation. J Royal Society Chemistry. 2001;126:472-5.
Massey FJ. The Kolmogorov-Smirnov test for goodness of fit. J American Statistical Asociation. 1951:46:68-78.
Bartlett M. Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London. 1937;160:268-82.
Duncan B. Multiple ranges and multiple F test. Biometrics. 1955;11:1-42.
Babu US, Wiesenfeld P W. Nutritional and Hematological Effects of Flaxseed. Washington. D.C. (USA): Editorial Lilian Thompson and Stephen Cunnane; 2003. p. 150-73.
Ayerza R, Coates W. Dietary Levels of Chia: Influence on yolk cholesterol, lipid content and fatty acid composition for two strains of hens. Poult Sci. 2000;78:724- 39.
Anwar F, Shahzad A, Shahid C, Abdullah I, Hussain H. Evaluación de la degradación oxidativa del aceite de soja almacenado a temperatura ambiente y a la luz solar. Grasas y Aceites. 2007;58:390-5.
FEDNA. Tablas FEDNA de composición y valor nutritivo de alimentos para la formulación de piensos compuestos (2ª ed.). Madrid, España: Fundación Española para el Desarrollo de la Nutrición Animal; 2003. p. 1-423.
Conchillo A, Valencia I, Puente A, Ansorena D, Astiasarán I. Componentes funcionales en aceites de pescado y de alga. Nutr Hosp. 2006;21:369-73.
Scientific Committee on Food. Opinion of the Scientific Committee on Food on an application from MultiBene for approval of plant-sterol enriched foods; 2002 [citado 31 Ago 2010]. p. 1-36. Disponible en: http://europa.eu.int/comm/food/fs/sc/scf/index_en.html
Moreau RA, Whitaker BD, Hicks KB. Phytosterols, phytostanols, and their conjugates in foods: Structural diversity, quantitative analysis, and healthpromoting uses. Prog Lipid Res. 2002;41:457-500.
Ostlund RE. Phytosterols in human nutrition. Annu Rev Nutr. 2002;22:533-49.
Ostlund RE Jr., Racette SB, Okeke A, Stenson WF. Phytosterols that are naturally present in commercial corn oil significantly reduce cholesterol absorption in humans. Am J Clin Nutr. 2002;75:1000-4.
Dawson PA, Rudel LL. Intestinal cholesterol absorption. Curr Opin Lipidol. 1999;10:315-20.
Kamm W, Dionisi R, Hischenhuber C, Engel H. Authenticity assessment of fats and oils. Food Rev Int. 2001;17:249-90.
Hiyoshi H, Yanagimachi M, Ito M, Ohtsuka I, Yoshida I, Saeki T, et al. Effect of ER-27856, a novel squalene synthase inhibitor on plasma cholesterol in rhesus monkeys: comparison with 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors. J Lipid Research. 2000;41:1135-44.
Dessi A, Deiana M, Day N, Rosa A, Banni S, Corongiu P. Oxidative stability of polyunsaturated fatty acids: efect of squalene. Eur J Lipid Sci Technol. 2002;104:506-12.
Relas H, Gylling H, Miettinen T. Fate of intravenously administered squalene and plant sterols in human subjects. J Lipid Research. 2001;42:987-94.