2011, Number 1
<< Back Next >>
Rev Cubana Plant Med 2011; 16 (1)
Antimicrobial action and toxicity against Artemia salina of the dichlormethane extract from Morinda royoc L. roots
Borroto J, Trujillo R, de la Torre YC, Waksman N, Hernández M, Salazar R
Language: Spanish
References: 20
Page: 34-42
PDF size: 68.35 Kb.
ABSTRACT
Introduction: plants are a source of natural diversity because of the great variety
of compounds that they synthesize. Anthraquinones in particular are an important
group of secondary metabolites characterized by their antimicrobial and antioxidant
action.
Objectives: to evaluate the antimicrobial action of dichloromethane extract from
Morinda royoc L. roots as well as its toxicity against
Artemia salina.
Methods: the antimicrobial action was determined by using the brooth
microdilution in 96-well plate. The extract action against 7
Candida spp clinical
isolates and against bacteria such as methicillin-resistant
Staphylococcus aureus,
Staphylococcus aureus ATCC 12598,
Enterococus faecales, Escherichia coli,
Acinetobacter baumanii, Pseudomonas aeruginosa and
Klebsiella pneumoniae was
evaluated. The extract toxicity was measured using brine shrimp (
Artemia salina)
lethality test.
Results: the crude extract proved to be active against all the tested
Candida
species. The lowest minimal inhibitory concentration was 1.95 μg/mL. The extract
showed strong inhibitory action against
S. aureus, E. faecales, and
E. coli. The
lowest minimal inhibitory concentration was 31.25 μg/mL. The extract presented
moderate toxicity against
A. salina.
Conclusions: the results showed the potentialities of dichloromethane extract from
M. royoc L. roots for the treatment of bacterial and fungal infections.
REFERENCES
Kolewe ME, Gaurav V, Roberts SC. Pharmaceutically Active Natural Product Synthesis and Supply via Plant Cell Culture Technology. Mol Pharmaceutics. 2008;5(2):243-56.
White TC, Marr KA, Bowden R. Factors that contribute to antifungal drug resistance. Clinical, Cellular, and Molecular. Clinical Microbiology Reviews. 1998;11(2):382-402.
Scull I, Cabrera MY, Cabrera I. Suplemento alimenticio de origen natural y su procesamiento de obtención. Instituto politécnico ¨Villenas Revolución¨ La Habana. Cuba Patente No CU22628 A1 2000.
Hernández J, Volpato G. Herbal mixtures in the traditional medicine of Eastern Cuba. J Ethnopharmacol. 2004;90(2):293-316.
Rivas M. Determinación de compuestos fenólicos en plantas de Morinda royoc L.: Actividad antioxidante [Tesis de Maestría]. Centro de Bioplantas, Universidad de Ciego de Ávila, Cuba; 2006.
Borroto J, Coll J, Rivas M, Blanco M, Concepción O, Tandrón YA, et al. Anthraquinones from in vitro root culture of Morinda royoc L. Plant Cell Tissue Organ Culture. 2008;94(2):181-7.
Mishra BB, Kishore N, Tiwari VK, Singh DD, Tripathi V, Hidalgo JA, Vazquez JA. A novel antifungal anthraquinone from seeds of Aegle marmelos Correa (family Rutaceae). Fitoterapia. 2010;81(2):104-7.
Kamiya K, Hamabe W, Tokuyama S, Hirano K, Satake T, Kumamoto-Yonezawa Y, et al. Inhibitory effect of anthraquinones isolated from the Noni (Morinda citrifolia) root on animal A-, B- and Y-families of DNA polymerases and human cancer cell proliferation. Food Chemistry. 2010;118(3):725-30.
Galindo F, Kabir N, Gavrilovic J, Russell DA. Spectroscopic studies of 1,2- diaminoanthraquinone (DAQ) as a fluorescent probe for the imaging of nitric oxide in living cells. Photochem Photobiol Sci. 2008;7(1):126-30.
Kanokmedhakul K, Kanokmedhakul S, Phatchana R. Biological activity of Anthraquinones and Triterpenoids from Prismatomeris fragrans. J Ethnopharmacol. 2005;100(3):284-8.
Wayne PA. National for Committee Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of yeast, approved standard 2002a; NCCLS document M27-A.
Wayne PA. National for Committee Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing. In 12th informational Supplement M100S12. 2002b; NCCLS document M100S12.
Carballo JL, Hernández-Inda ZL, Pérez P, García-Grávalos MD. A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products. BMC Biotechnology. 2002;2:17-21.
Hidalgo JA, Vazquez JA. Candidiasis, emedicine from WebMD, 2008 [cited Sep 2010]. Available in: http://emedicine.medscape.com/article/213853-overview
Carrillo-Muñoz AJ, Giusiano G, Ezkurra PA, Quindós G. Antifungal agents. Mode of action in yeast cells. Rev Española Quimioterapia. 2006;19(2):130-9.
Carmeli Y, Troillet N, Eliopoulos GM, Samore MH. Emergence of antibioticresistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrobial Agents Chemotherapy. 1999;43(6):1379- 82.
Krolicka A, Szpitter A, Gilgenast E, Romanik G, Kaminski M, Lojkowska E. Stimulation of antibacterial naphthoquinones and flavonoids accumulation in carnivorous plants grown in vitro by addition of elicitors. Enzyme Microbial Technology. 2008;42(3):216-21.
Chouna JP, Nkeng-Efouet PA, Lenta BN, Devkota KP, Neumann B, Stammler HG; et al. Antibacterial endiandric acid derivatives from Beilschmiedia anacardioides. Phytochemistry. 2009;70(5):684-8.
Gould D, Booker C. Applied Microbiology for Nurses. Aardvark Editorial, Mcndham, Suffolk, London 2000. pp: 75-94.
Jain N, Light M, van Staden J. Antibacterial activity of hairy-root cultures of Maytenus senegalensis. South African J Botany. 2008;74(1):163-6.