2013, Number 5
<< Back Next >>
salud publica mex 2013; 55 (5)
Design and evaluation of an ovitrap for the monitoring and control of Aedes aegypti, dengue fever vector
Torres-Estrada JL, Rodiles-Cruz NC
Language: Spanish
References: 40
Page: 505-511
PDF size: 606.01 Kb.
ABSTRACT
Objective. To design and evaluate in field conditions an
ovitrap with chemical attractants and a population regulator
for the monitoring and control of dengue vectors.
Materials
and methods. CRISPP ovitrap (OC) effectiveness was evaluated
in comparison with a standard ovitrap (OE). A septum
containing two chemical attractants and a mesh tricot on the
surface of the water was collocated in the OC. The number
of eggs in both ovitraps and the mortality of the emerged
adults were counted. Also the residual effect was determined.
Results. There were a total of 7 168 eggs, 4 659 (65%)
were layed in the OC and 2 509 (35%) in the OE and the
emergence of adults in the OC was 0% compared with 93%
in the OE. The residual effect was four days.
Conclusions.
The OC contained more eggs and caused minor emergency
dengue vector adults in comparison with the OE.
REFERENCES
Gubler DJ. Dengue and dengue hemorrhagic fever: its history and surgence as a global public health problem. En: Gubler DJ, Kuno G, eds. Dengue and dengue hemorrhagic fever. London: CAB International, 1997:1-22.
Salazar MI, Richardson JH, Sánchez-Vargas I, Olson KE, Beaty BJ. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiology 2007;7:9.
Hu W, Clements A, Williams G, Tong S. Spatial analysis of notified dengue fever infections. Epidemiol Infect 2011;139:391-399.
Lloyd L. Mejores prácticas para la prevención y el control del dengue en las Américas. Environmental Health Project, Resumen Ejecutivo 2003:20-22.
Gubler DJ, Clark GG. Community involvement in the control of Aedes aegypti. Acta Tropica 1996;61:169-179.
Arias J. El dengue en Cuba. Rev Panam Salud Pública 2002;11:221-222.
Spiegel JM, Yassi A, Tate R. Dengue in Cuba: mobilization against Aedes aegypti. Lancet Infectious Diseases 2002;2:207-208.
Spiegel JM, Bennett S, Hattersley L, Hayden MH, Kittayapong P, Nalin S, et al. Barriers and bridges to prevention and control of dengue: the need for a social-ecological approach. EcoHealth Journal 2005;2:273-290.
Defoliart GR, Watts DM, Grimstad PR. Changing patterns in mosquitoborne arboviruses. J Am Mosq Control Assoc 1986;2:437-455.
García-Rejón JE, Loroño-Pino MA, Farfan-Ale JA, Flores-Flores L, Rosado-Paredes EP, Rivero-Cárdenas N, et al. Dengue virus-infected Aedes aegypti in the home environment. Am J Trop Med Hyg 2008;79: 940-950.
García-Rejón JE, López-Uribe MP, Loroño-Pino MA, Farfán-Ale JA, Nájera-Vázquez MR, Lozano-Fuentes S, et al. Productive container types for Aedes aegypti immature in Mérida, México. J Med Entomol 2011;48:644-650.
Fay RW, Perry AS. Laboratory studies of ovipositional preferences of Aedes aegypti. Mosq News 1965;25:276-281.
Fay RW, Eliason DA. A preferred oviposition site as a surveillance method for Aedes aegypti. Mosq News 1966;26:531-535.
Reiter P, Nathan M. Guidelines for assessing the efficacy of insecticidal space sprays for control of the dengue vector Aedes aegypti. Geneva World Health Organization, 2001.
Kloter KO, Bowman DD, Carroll MK. Evaluation of some ovitrap materials used for Aedes aegypti surveillance. Mosq News 1983;43:438-441.
Ritchie SA, Long S, Hart A, Webb CE, Russell RC. An adulticidal sticky ovitrap for sampling container-breeding mosquitoes. J Am Mosq Control Assoc 2003;19:235-242.
Chua KB, Chua IL, Chua IE, Chua KH. Differential preferences of oviposition by Aedes mosquitos in man-made containers under field condition. Southeast Asian J Trop Med Public Health 2004;35:599-607.
Lenhart AE, Walle M, Cedillo H, Kroeger A. Building a better ovitrap for detecting Aedes aegypti oviposition. Acta Tropica 2005;96:56-59.
Chadee, DD. Oviposition strategies adopted by gravid Aedes aegypti (L) (Diptera: Culicidae) as detected by ovitraps in Trinidad, West Indies (2002-2006). Acta Tropica 2009;111:279-283.
Williams CR, Ritchie SA, Long S, Dennison N, Russell RC. Impact of a bifenthrin-treated lethal ovitrap on Aedes aegypti oviposition and mortality in North Queensland, Australia. J Med Entomol 2007;44:256-262.
Millar JG, Chaney JD, Mulla MS. Identification of oviposition attractants for Culex quinquefasciatus from fermented bermuda grass infusions. J Am Mosq Control Assoc 1992;8:11-17.
Mendki MJ, Ganesan K, Prakash S, Suryanarayana MVS, Malhotra RC, Rao KM, et al. Heneicosane: an oviposition attractant of larval origin in Aedes aegypti. Curr Sci India 2000;78:1295-1296.
Seenivasagan T, Sharma KR, Sekhar K, Ganesan K, Prakash S, Vijayaraghavan R. Electroantennogram, flight orientation, and oviposition responses of Aedes aegypti to the oviposition pheromone n-heneicosane. Parasitol Res 104 2009;827-833.
Baak-Baak CM, Rodríguez-Ramírez AD, García-Rejón JE, Ríos- Delgado SM, Torres-Estrada JL. Development and laboratory evaluation of chemically-based baited ovitrap for the monitoring of Aedes aegypti. J Vector Ecol 2013, 38(1):175-181.
Briones-Roblero CI, Vázquez Corzo S, Del Carpio-Estrada LA, Orozco-Magdaleno CE, Pérez-García G, Ramírez-Aguilar FJ. Factores asociados e índice de correlación entre el diagnóstico clínico y de laboratorio de dengue. Hig Sanid Ambient 2011: 807-814.
Chan, KL, Kiat NS, Koth TK. An autocidal ovitrap for the control and possible eradication of Aedes aegypti. Southeast Asian J Trop Med Public Health 1977;8:56-61.
Cheng Min-Lee, Beng-Chuan Ho, Bartnett E, Goodwin N. Role of a modified ovitrap in the control of Aedes aegypti in Houston, Texas, EUA. Bull World Health Organ 1982;60:291-296.
Service MW. Mosquito ecology. Field sampling methods. London, England: Applied Science Publishers LTD. 1976;582.
Pawliszyn J. Solid phase microextraction-theory and practice. New York: Wiley, 1997.
Ríos-Delgado SM, Rodríguez-Ramírez AD, Cruz-López L, Escobar- Pérez LA, Aburto-Juárez ML, Torres-Estrada JL. Respuesta de Anopheles albimanus a compuestos volátiles de casas del sur de Chiapas, México. Salud Publica Mex 2008;50:367-374.
Zar JH. Biostatistical analysis. 4th ed. Englewood Cliffs, NJ: Prentice Hall, 1999.
Reiter P, Amador MA, Colon N. Enhancement of the CDC ovitrap with hay infusions for daily monitoring of Aedes aegypti populations. J Am Mosq Control Assoc 1991;7:52-55.
Polson KA, Curtis Ch, Seng Ch M, Olson JG, Chantla N, Rawlins SC. The use of ovitrap baited with hay infusion as a surveillance tool for Aedes aegypti mosquitoes in Cambodia. Dengue Bull 2002;26:178-184.
Santos SRA, Melo-Santos MAV, Regis L, Albuquerque CR. Field evaluation of ovitraps consociated with grass infusion and Bacillus thuringiensis var. israelensis to determine oviposition rates of Aedes aegypti. Dengue Bulletin 2003;27:156-162.
Michaelakis A, Mihou AP, Koliopoulos G, Couladouros EA. Influence of the microencapsulated pheromone from aged infusion as an oviposition medium of the West Nile virus vector Culex pipiens. Parasitol Res 2009;104:1005-1009.
Atterholt AC, Delwiche MJ, Rice RE, Krochta JM. Study of biopolymers and paraffin as potential controlled-release carriers for insect pheromones. J Agric Food Chem 1998;46:4429-4434.
Webster RP, Yin C-M. Effects of photoperiod and temperature on calling behaviour of the gypsy moth, Lymantria dispar l. (Lepidoptera: Lymantriidae). The Canadian Entomologist 1997;129:843-854.
Zeichner BC, Perich MJ. Laboratory testing of a lethal ovitrap for Aedes aegypti. Med and Vet Entomol 1991;13:234-238.
Sithiprasasna R, Mahapibul P, Noigamol C et al. Field evaluation of a lethal ovitrap for the control of Aedes aegypti (Diptera: Culicidae) in Thailand. J Med Entomol 2003;40:455-462.
Torres-Estrada JL, Rodríguez MH, Cruz-López L, Arredondo-Jiménez JI. Selective oviposition by Aedes aegypti (Diptera: Culicidae) in response to mesocyclops longisetus (Copepoda: Cyclopoidea) under laboratory and field conditions. J Med Entomol 2001;38:188-192