2011, Number 1
Next >>
Rev Cubana Plant Med 2011; 16 (1)
Protective effect of polyphenols from Rhizophora mangle L. on oxidative damage to proteins and DNA
Sánchez CJ, Martínez SG, Faure GR
Language: Spanish
References: 44
Page: 1-12
PDF size: 87.61 Kb.
ABSTRACT
Introduction: the aqueous extract from
Rhizophora mangle (L.) bark has
demonstrated a broad spectrum of medicinal uses; for example, in treating bovine
mastitis, wound healing, uterine infections and gastroduodenal ulcers, due to its
antiseptic, healing, anti-inflammatory and antioxidant properties. However, the
antioxidant activity in its whole complexity has not been fully studied in order to
elucidate the mechanisms of action involved in this pharmacological effect.
Objective: to determine if
R. mangle bark aqueous extract and its polyphenolic
fraction protect the main biomolecules from oxidative damage.
Methods: the antioxidant activity of
R. mangle extract and its polyphenolic fraction
on the main biomolecules was determined by the following methods: oxidative
damage trial on bovine serum albumin exposed to hydroxyl radicals generated in
the Fenton system and the bleomycin-Fe
3+ system-induced DNA oxidative
degradation trial.
Results: the
R. mangle bark extract and its polyphenolic fraction, at the highest
tested concentration, reduced the sulfhydryl group oxidation by 87,3 % and 89,1 %
and they also inhibited the DNA degradation by 98.4 % and 91.9 % respectively.
The regression analysis demonstrated that both effects depended on tannin
concentration in the extract and its fraction. The comparison of regression lines
revealed that the extract and its fraction were equally effective in protecting bovine
serum albumin from oxidation by hydroxyl radicals; however, the extract was more
effective when protecting DNA from oxidative degradation than its fraction.
Conclusions: the
R. mangle aqueous extract showed a protective effect on the
main biomolecules from the oxidative damage, evidenced by inhibiting loss of
sulfhydryl group in bovine serum albumin and decreasing the DNA degradation. At
the same time, it was shown that polyphenolic compounds present in the extract
were the main responsible for the antioxidant effects observed in this study.
REFERENCES
Kohen R, Nyska A. Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicologic Pathology. 2002;30(6):620-50.
McCord JM. The Evolution of free radicals and oxidative stress. Am J Med. 2000;108:652-59.
Halliwell B. Antioxidants in human health and disease. Annual Review Nutrition. 1996;16(1):33-50.
Sánchez LM, Melchor G, Álvarez S, Bulnes C. Caracterización química y toxicológica de una formulación cicatrizante de Rhizophora mangle L. Rev Salud Anim. 1998;20(2):69-72.
Roig JT. Plantas medicinales, aromáticas y venenosas de Cuba. 2da ed. La Habana Editorial Científico-Técnica; 1988. p. 606-7.
Rojas N, Coto O. Propiedades antimicrobianas de extractos de Rhizophora mangle L. Rev Cubana Med Tropical. 1978;30(3):181-7.
Cáceres A, López B, Juárez X, del Aguila J, García S. Plants used in Guatemala for the treatment of dermatophytic infections 2: Evaluation of antifungal activity of seven American plants. J Ethnopharmacol. 1993;40:207-13.
Armenteros M. Evaluación de un desinfectante mamario post-ordeño de origen natural [Tesis doctoral]. La Habana: Centro Nacional de Sanidad Agropecuaria, Universidad Agraria de La Habana; 1998.
Bulnes C, Fernández O, Navarro D, Marrero E, Rueda D, Figueroa O, et al. Healing effect of a red mangrove extract in open aseptic wounds in rat. Rev Salud Anim. 2001;23(2):102-8.
Fernández O, Capdevila JZ, Dalla G, Melchor G. Efficacy of Rhizophora mangle aqueous bark extract in the healing of open surgical wounds. Fitoterapia. 2002;73:564-8.
Montes de Oca N, Reverón Y, González R. Evaluation of antimicrobial activity of different extracts of Rhizophora mangle L using five methods. Rev Salud Anim. 2001;23:1-11.
Melchor G, Armenteros M, Fernández O, Linares E, Fragas I. Antibacterial activity of Rhizophora mangle bark. Fitoterapia. 2001;72:689-91.
Agüero F. Evaluación de un producto natural, a base de Rhizophora mangle L. en la terapia de la endometritis bovina [Tesis doctoral]. La Habana: Centro Nacional de Sanidad Agropecuaria, Universidad Agraria de La Habana. 2004.
Sánchez LM, Rueda D, Gómez BC. Gastric antiulcer effect of Rhizophora mangle L. J Ethnopharmacol. 2001;77:1-3.
Marrero E, Sánchez J, de Armas E, Escobar A, Melchor G, Abad MJ, et al. COX-2 and sPLA2 inhibitory activity of aqueous extract polyphenols of Rhizophora mangle (red mangrove). Fitoterapia. 2006;77:313-5.
Sánchez J, Melchor G, Martínez G, Escobar A, Faure R. Antioxidant activity of Rhizophora mangle bark. Fitoterapia. 2006;77:141-3.
Sánchez J, Melchor G, Martínez G, Sánchez LM, Faure R, Vinardel P. Protective effect of Rhizophora mangle bark on lipid peroxidation and erythrocyte hemolysis. Phcog Mag. 2005;1(3):101-4.
Sánchez J, Faure R, Martínez G, Vega E, Fernández O. Propiedades antioxidantes de Rhizophora mangle L. y su relación con el proceso de curación de heridas en ratas. Rev Salud Anim. 2009;31(3):170-5.
Matsuo T, McCord Itoo SA. Simple and rapid purification method of condensed tannins from several young fruits. Agric Biol Chem. 1980;45:1885-7.
Hagermann AE, Butler LG. Protein precipitation method for the determination of tannins. J Agric Food Chem. 1978;26:809-12.
Kingu CS, Wei R. Alcohol deshydrogenase catalyzed reduction of protein carbonyl derivatives. J Biochem Biophys Meth. 1997;34:61-8.
Sedlak J, Lindsay RH. Estimation of total protein-bound and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem. 1968;25:192-205.
Aruoma OI. Use of DNA damage as a measure of pro oxidant actions of antioxidant food additives and nutrient components. In: Halliwell B Aruoma OI, editors. DNA and free radical. Ellis Horwood: London; 1993. p. 315 27.
Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;30:301-10.
Davies KJA. Protein damage and degradation by oxygen radicals. I. General aspects. Modification of aminoacids. J Biol Chem. 1987;262(20):9895-901.
Davies KJ, Delsignore ME, Lin SW. Protein damage and degradation by oxygen radicals. II. Modification of amino acids. J Biol Chem. 1987;262(20):9902-7.
Dorfman LM, Adams GE. Reactivity of the hydroxyl radical in aqueous solution. National Standards Reference Series 46, Washington, D.C.: National Bureau of Standards; 1973.
Di Simplicio P, Cheeseman KH, Slater TF. The reactivity of the SH group of bovine serum albumin with free radicals. Free Radic Res Commun. 1991;14(4):253-62.
Miura T, Muraoka S, Ogiso T. Oxidative damage to bovine serum albumin induced by hydroxyl radical generating systems of xanthine oxidase + EDTA-Fe3+ and ascorbate + EDTA-Fe3+. Chem Biol Interact. 1992;85(2-3):243-54.
Davies MJ, Gilbert BC, Haywood RM. Radical-induced damage to bovine serum albumin: role of the cysteine residue. Free Radic Res Commun. 1993;18(6):353-67.
Martínez G, Giuliani A, León OS, Pérez G, Nuñez Sellés AJ. Effect of Mangifera indica L. Extract (QF808) on Protein and Hepatic Microsome Peroxidation. Phytother Res. 2001;15:581-5.
Martínez G, Giuliani A, Nuñez AJ, Pérez G, León OS. Protective effects of mangifera indica L. Extract, mangiferin and selected antioxidants against TPAinduced biomolecules oxidation and peritoneal macrophage activation in mice. Pharmacological Research. 2000;42(6):565-73.
Filipe P, Morliere P, Patterson LK, Hug GL, Maziere JC, Maziere C, et al. Mechanisms of flavonoid repair reactions with amino acid radicals in models of biological systems: a pulse radiolysis study in micelles and human serum albumin. Biochimica et Biophysica Acta. 2002;1572:150-62.
Moore CW. Degradation of DNA and Structure-Activity Relationship between Bleomycins A2 and B2 in the Absence of DNA Repair. Biochemistry. 1990;29:1342- 7.
Solomon LR, Beerelli RD, Moseley PL. Bleomycin-iron can degrade DNA in the presence of excess ethylenediaminetetraacetic acid in vitro. Biochemistry. 1989;28(26):9932-7.
Takeshita M, Grollman AP, Ohtsubo E, Ohtsubo E. Interaction of Bleomycin with DNA. PNAS. 1978;75(12):5983-7.
Giloni L, Takeshita M, Johnson F, Iden C, Grohant AP. Bleomycin-induced strand-scission of DNA. Mechanism of deoxyribose cleavage. J Biological Chemistry. 1981;256(16):8608-15.
Povirk LF. Catalytic release of deoxyribonucleic acid bases by oxidation and reduction of an iron-bleomycin complex. Biochemistry. 1979;18:3989-95.
Martínez G, Delgado R, Pérez G, Garrido G, Núñez AJ. Evaluation of the in vitro Antioxidant Activity of Mangifera indica L. Extract (Vimang). Phytother Res. 2000;14:424-7.
Stagos D, Kazantzoglou G, Theofanidou D, Kakalopoulou G, Magiatis P, Mitaku S, et al. Activity of grape extracts from Greek varieties of Vitis vinifera against mutagenicity induced by bleomycin and hydrogen peroxide in Salmonella typhimurium strain TA102. Mutat Res. 2006;609(2):165-75.
Edenharder R, Grunhage D. Free radical scavenging abilities of flavonoids as mechanism of protection against mutagenicity induced by tert-butyl hydroperoxide or cumene hydroperoxide in Salmonella typhimurium TA102. Mutat Res. 2003;540(1):1-18.
Geetha T, Garg A, Chopra K, Kaur I. Delineation of antimutagenic activity of catechin, epicatechin and green tea extract. Mutat Res. 2004;556(1-2):65-74.
Stagos D, Kazantzoglou G, Magiatis P, Mitaku S, Anagnostopoulos K, Kouretas D. Effects of plant phenolics and grape extracts from Greek varieties of Vitis vinifera on Mitomycin C and topoisomerase I-induced nicking of DNA. Int J Mol Med. 2005;15(6):1013-22.
Fan P, Lou H. Effects of polyphenols from grape seeds on oxidative damage to cellular DNA. Mol Cell Biochem. 2004;267(1-2):67-74.