2013, Number 2
<< Back Next >>
Revista de Ciencias Médicas de la Habana 2013; 19 (2)
Utility of the SWIFT prognostic scale at a Polyvalent Intensive Care Unit
Potes DBA, Pérez AH, Gutiérrez RAR, Burgos AD
Language: Spanish
References: 18
Page:
PDF size: 87.76 Kb.
ABSTRACT
Introduction: SWIFT is an index created to predict adverse events (readmissions and hidden
mortality) after discharge from the ICU.
Objective: to evaluate the usefulness of the SWIFT prognostic scale in predicting adverse events
after unit discharge.
Methods: It was conducted a cohort study in Unit 8B Polyvalent Intensive Care Unit of
"Hermanos Ameijeiras" Clinical Surgical Hospital, of Havana province, in the period from March 1st,
2009 until February 28, 2011. The patients were divided into two groups according to the result of
the scale: ‹15 points and another with ≥ 15, evaluating the occurrence of hidden mortality and
readmissions. As main variables it was measured: mortality, adverse events, the SAPS- 3 scale
score and its comparison with the SWIFT scale.
Results: the SWIFT scale proved to be useful in predicting adverse events after discharge from
the ICU without discriminating over time. The highest SAPS-3 score on admission corresponded to
a higher value of the SWIFT Index at discharge from Intensive Care Unit.
Conclusions: patients discharged from the ICU with a SWIFT score ≥ 15 points presented a
slightly higher stay than those with SWIFT ‹15 points having no statistical significance.
REFERENCES
Morales Larramendi R, Escalona Velásquez NA. Sistemas de valoración pronóstica y escalas evaluadoras en medicina intensiva. En: Ecimed. Terapia Intensiva T-1. Ciudad de la Habana; 2006. p. 48-71.
Robert Cobas Y, Pérez-Assef H, Gutiérrez Rojas AR. Utilidad del índice pronóstico SAPS-3 en la UCI-8 del Hospital Hermanos Ameijeiras. Ciudad de la Habana: CD Congreso URGRAV; 2009.
Pérez-Assef H, Pico JL. Validación del índice pronóstico SAPS-3 en la UCI polivalente 8 del hospital Hermanos Ameijeiras. Ciudad de la Habana: CD Congreso URGRAV; 2006.
Goldhill D, Mc Narry A. Physiological abnormalities in early warning scores are related to mortality in adult patients. British Journal of Anaesthesia [Internet]. 2004 Jun [cited 2011 Jun 20];92(6). Available from:http://www.ncbi.nlm.nih.gov/pubmed/15064245
Rosenberg AL, Hofer TP, Hayward RA, Strachan C, Watts CM. Who bounces back? Physiologic and others predictors of intensive care unit readmission. Crit Care Med [Internet]. 2001 Mar [cited 2011 Jun 20];29(3). Available from:http://www.ncbi.nlm.nih.gov/pubmed/11373413
Teres D. Civilian triaje in the intensive care unit: the ritual of the last bed. Crit Care Med [Internet]. 1993 Apr [cited 2011 Jun 20];21(4). Available from: http://www.ncbi.nlm.nih.gov/pubmed/8472581
Gagic O, Malinchoc M. The Stability and wordload index for transfer score predicts unnplanned intensive care unit patient readmissions: initial development and validation. Crit Care Med. 2008; 36: 676-682.
Campbell AJ, Cook JA, AdeyG, Cuthbertson BH. Predicting death and readmission after intensive care discharge. Br J Anaesth [Internet]. 2008 May [cited 2011 Jun 20];100. Available from:http://www.ncbi.nlm.nih.gov/pubmed/18385264
Alban RF, Nisim AA, Ho J, Nishi GK, Shabot MM. Readmission to surgical intensive care increases severity-adjusted patient mortality. J Trauma-Inj Infect Crit Care [Internet]. 2006 May [cited 2011 Jun 20];60(5). Available from:http://www.ncbi.nlm.nih.gov/pubmed/16688065
Willians TA, Leslie GD. Beyond de wall is: a review of ICU clinics and their impact on patient outcomes after leaving hospital. Aust Crit Care [Internet]. 2008 [cited 2011 Jun 20];21(1). Available from:http://www.ncbi.nlm.nih.gov/pubmed/18206381
Ho KM, Knuiman M. Bayesian approach to predict hospital mortality of intensive care readmissions during the same hospitalization. Anaesth Intensive Care [Internet]. 2009 Jan [cited 2011 Jun 20];36(1). Available from:http://www.ncbi.nlm.nih.gov/pubmed/18326130
Rosenberg AL, Watts C. Patients readmitted to ICUs: a systematic review of risk factors and outcomes. Chest [Internet]. 2000 Aug [cited 2011 Jun 20];118(2). Available form: http://www.ncbi.nlm.nih.gov/pubmed/10936146
Kaben A, Corrêa F, Reinhart K, Settmacher U, Gummert J, Kalff R [et al]. Readmission to a surgical intensive care unit: incidence, outcome and risk factors. Crit Care Med [Internet]. 2010 [cited 2011 Jun 20];12(5). Available from:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2592757/
Frost SA, Alexandrou E, Bogdanovski T, Salamonson Y, Davidson PM, Parr MJ [et al]. Severity of illness and risk readmission to intensive care: A meta-analysis. Resuscitation [Internet]. 2009 May [cited 2011 Jun 20];80(5). Available from:http://www.ncbi.nlm.nih.gov/pubmed/19342149
Cretikos MA, Bellomo R, Hillman K, Chen J, Finfer S, Flabouris A. Respiratory rate: the neglected vital sign. Med J Aust [Internet]. 2008 [cited 2011 Jun 20];188(11). Available from:https://www.mja.com.au/journal/2008/188/11/respiratory-rate-neglected-vitalsign
Ofoma U, Kashyap R, Daniels C, Gajic O, Pickering B, Farmer C. Does Implementation of a previously validated prediction tool reduce readmission rates iInto a medical intensive care unit?. CHEST Oct 2012;142(4):278A-278A.
S, Agarwal D, Hanson A, Farmer JC, Pickering BW, Gajic O [et al]. The use of an electronic medical record based automatic calculation tool to quantify risk of unplanned readmission to the intensive care unit: a validation study.Journal of Critical Care [Internet]. 2011 Dec [cited 2011 Jun 20];26(6). Available from: http://www.ncbi.nlm.nih.gov/pubmed/21715140
Ouanes I, Schwebel C, Français A, Bruel C, Philippart F, Vesin A [et al]. A model to predict short-term death or readmission after intensive care unit discharge. Journal of Critical Care [Internet]. 2012 Aug [cited 2011 Jun 20];27(4). Available from: http://www.ncbi.nlm.nih.gov/pubmed/22172798