2013, Number 3
<< Back Next >>
Revista Cubana de Obstetricia y Ginecología 2013; 39 (3)
Aspirin induced lipoxins: alternative to modulate proinflammatory processes in preeclampsia
Velásquez BM, Gil-Villa AM, Cadavid JAP
Language: Spanish
References: 50
Page:
PDF size: 156.71 Kb.
ABSTRACT
Preeclampsia is a hypertensive syndrome that occurs after the 20th weeks of
gestation. The objective of this review was to describe the mechanisms of production
and action of aspirin- triggered lipoxins in order to consider them as a suitable
alternative to modulate oxidative processes, which are characteristic of preeclampsia
and proinflammatory cycles starting with cascade activation of nuclear factor-kappa B,
consequently of their products. Preeclampsia is characterized by the production of
proinflammatory substances that induce directly or indirectly endothelial cell
activation,, through prior activation of monocytes, which can generate reactive oxygen
species and expression of adhesion molecules that mediate interacting with the
endothelium, contributing to its dysfunction, activation and induction of signaling
cascade nuclear factor-kappa B. Aspirin induces lipoxin, which inhibits the activation of
nuclear factor-kappa B by blocking IkB protein kinase, necessary to trigger the
activation of canonical and non-canonical pathway of this nuclear factor.
REFERENCES
Meis PJ, Goldenberg RL, Mercer BM. The preterm prediction study: risk factors for indicated preterm births. Maternal-Fetal Medicine Units Network of the National Institute of Child Health and Human Development. Am J Obstet Gynecol. 1998;178:562-7.
Arngrimsson R, Bjornsson S, Geirsson RT, Bjornsson H, Walker JJ, Snaedal G. Genetic and familial predisposition to eclampsia and pre-eclampsia in a defined population. Br J Obstet Gynaecol. 1990;97:762-9.
Simpson LL. Maternal medical disease: risk of antepartum fetal death. Semin Perinatol. 2002;26:42-50.
Heyborne KD. Preeclampsia prevention: lessons from the low-dose aspirin therapy trials. Am J Obstet Gynecol. 2000;183:523-8.
Ogasawara MS, Iinuma Y, Aoki K, Katano K, Ozaki Y, Suzumori K. Low-dose aspirin is effective for treatment of recurrent miscarriage in patients with decreased coagulation factor XII. Fertil Steril. 2001;76:203-4.
Roberge S, Giguere Y, Villa P. Early administration of low-dose aspirin for the prevention of severe and mild preeclampsia: a systematic review and meta-analysis. Am J Perinatol. 2012;29:551-6.
Duley L, Henderson-Smart DJ, Meher S, King JF. Antiplatelet agents for preventing pre-eclampsia and its complications. Cochrane Database Syst Rev. 2007:CD004659.
Berger JS, Roncaglioni MC, Avanzini F, Pangrazzi I, Tognoni G, Brown DL. Aspirin for the primary prevention of cardiovascular events in women and men: a sex-specific meta-analysis of randomized controlled trials. JAMA. 2006;295:306-13.
Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirinlike drugs. Nat New Biol. 1971;231:232-5.
Claria J, Serhan CN. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc Natl Acad Sci US A. 1995;92:9475-9.
Serhan CN, Yacoubian S, Yang R. Anti-inflammatory and proresolving lipid mediators. Annu Rev Pathol. 2008;3:279-312.
Gil-Villa AM, Norling LV, Serhan CN, Cordero D, Rojas M, Cadavid A. Aspirin triggered-lipoxin A4 reduces the adhesion of human polymorphonuclear neutrophils to endothelial cells initiated by preeclamptic plasma. Prostaglandins Leukot Essent Fatty Acids. 2012;87:127-34.
Ariel A, Chiang N, Arita M, Petasis NA, Serhan CN. Aspirin-triggered lipoxin A4 and B4 analogs block extracellular signal-regulated kinase-dependent TNF-alpha secretion from human T cells. J Immunol. 2003;170:6266-72.
Jozsef L, Zouki C, Petasis NA, Serhan CN, Filep JG. Lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 inhibit peroxynitrite formation, NF-kappa B and AP-1 activation, and IL-8 gene expression in human leukocytes. Proc Natl Acad Sci U S A. 2002;99:13266- 71.
Lam C, Lim KH, Karumanchi SA. Circulating angiogenic factors in the pathogenesis and prediction of preeclampsia. Hypertension. 2005;46:1077-85.
Redman CW, Sargent IL. Placental debris, oxidative stress and pre-eclampsia. Placenta. 2000;21:597-602.
Hou L, Zhu Y, Ma X, Li J, Zhang W. Serum protein microarray analysis of patients with preeclampsia. Mol Med Report. 2012;6:83-7.
Faas MM, van Pampus MG, Anninga ZA. Plasma from preeclamptic women activates endothelial cells via monocyte activation in vitro. J Reprod Immunol. 2010;87:28-38.
Redman CW, Sacks GP, Sargent IL. Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol. 1999;180:499-506.
Mikic AN, Brkic S, Maric D, Sekulic B, Cetkovic A, Mitic G. Thiobarbituric acid reactive substances as marker of oxidative stress in pregnancies with pre-eclampsia. Med Pregl. 2011;64:377-80.
Serdar Z, Gur E, Colakoethullary M, Develioethlu O, Sarandol E. Lipid and protein oxidation and antioxidant function in women with mild and severe preeclampsia. Arch Gynecol Obstet. 2003;268:19-25.
Peracoli MT, Bannwart CF, Cristofalo R. Increased reactive oxygen species and tumor necrosis factor-alpha production by monocytes are associated with elevated levels of uric acid in pre-eclamptic women. Am J Reprod Immunol. 2011;66:460-7.
Flood-Nichols SK, Stallings JD, Gotkin JL, Tinnemore D, Napolitano PG, Ippolito DL. Elevated ratio of maternal plasma ApoCIII to ApoCII in preeclampsia. Reprod Sci. 2011;18:493-502.
Gervasi MT, Chaiworapongsa T, Naccasha N. Phenotypic and metabolic characteristics of maternal monocytes and granulocytes in preterm labor with intact membranes. Am J Obstet Gynecol. 2001;185:1124-9.
Luppi P, Tse H, Lain KY, Markovic N, Piganelli JD, DeLoia JA. Preeclampsia activates circulating immune cells with engagement of the NF-kappaB pathway. Am J Reprod Immunol. 2006;56:135-44.
Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res. 2011;21:103-15.
Jacobs MD, Harrison SC. Structure of an IkappaBalpha/NF-kappaB complex. Cell. 1998;95:749-58.
Gringhuis SI, den Dunnen J, Litjens M. Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk. Nat Immunol. 2009;10:203-13.
Verma UN, Yamamoto Y, Prajapati S, Gaynor RB. Nuclear role of I kappa B Kinasegamma/ NF-kappa B essential modulator (IKK gamma/NEMO) in NF-kappa Bdependent gene expression. J Biol Chem. 2004;279:3509-15.
Urso C, Caimi G. Oxidative stress and endothelial dysfunction. Minerva Med. 2011;102:59-77.
Hayman R, Brockelsby J, Kenny L, Baker P. Preeclampsia: the endothelium, circulating factor(s) and vascular endothelial growth factor. J Soc Gynecol Investig. 1999;6:3-10.
Lockwood CJ, Huang SJ, Krikun G. Decidual hemostasis, inflammation, and angiogenesis in pre-eclampsia. Semin Thromb Hemost. 2011;37:158-64.
Astudillo AM, Balgoma D, Balboa MA, Balsinde J. Dynamics of arachidonic acid mobilization by inflammatory cells. Biochimica et biophysica acta. 2012;1821:249-56.
Fleming I. Cytochrome P450-dependent eicosanoid production and crosstalk. Curr Opin Lipidol. 2011;22:403-9.
Haeggstrom JZ, Funk CD. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev. 2011;111:5866-98.
Smith WL, Urade Y, Jakobsson PJ. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev. 2011;111:5821-65.
Masferrer JL, Zweifel BS, Manning PT. Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proceedings of the National Academy of Sciences of the United States of America. 1994;91:3228-32.
Amann R, Peskar BA. Anti-inflammatory effects of aspirin and sodium salicylate. Eur J Pharmacol. 2002;447:1-9.
Vane JR, Botting RM. The mechanism of action of aspirin. Thromb Res. 2003;110:255-8.
Saunders MA, Sansores-Garcia L, Gilroy DW, Wu KK. Selective suppression of CCAAT/enhancer-binding protein beta binding and cyclooxygenase-2 promoter activity by sodium salicylate in quiescent human fibroblasts. J Biol Chem. 2001;276:18897- 904.
Yoshida Y, Singh I, Darby CP. Effect of salicylic acid and calcium on mitochondrial functions. Acta Neurol Scand. 1992;85:191-6.
Schwenger P, Bellosta P, Vietor I, Basilico C, Skolnik EY, Vilcek J. Sodium salicylate induces apoptosis via p38 mitogen-activated protein kinase but inhibits tumor necrosis factor-induced c-Jun N-terminal kinase/stress-activated protein kinase activation. Proc Natl Acad Sci U S A. 1997;94:2869-73.
Yan F, Polk DB. Aminosalicylic acid inhibits IkappaB kinase alpha phosphorylation of IkappaBalpha in mouse intestinal epithelial cells. J Biol Chem. 1999;274:36631-6.
Yoo CG, Lee S, Lee CT, Kim YW, Han SK, Shim YS. Effect of acetylsalicylic acid on endogenous I kappa B kinase activity in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2001;280:L3-9.
Cieslik K, Zhu Y, Wu KK. Salicylate suppresses macrophage nitric-oxide synthase-2 and cyclo-oxygenase-2 expression by inhibiting CCAAT/enhancer-binding protein-beta binding via a common signaling pathway. J Biol Chem. 2002;277:49304-10.
DeWitt DL, el-Harith EA, Kraemer SA. The aspirin and heme-binding sites of ovine and murine prostaglandin endoperoxide synthases. J Biol Chem. 1990;265:5192-8.
Lecomte M, Laneuville O, Ji C, DeWitt DL, Smith WL. Acetylation of human prostaglandin endoperoxide synthase-2 (cyclooxygenase-2) by aspirin. J Biol Chem. 1994;269:13207-15.
Wang YP, Wu Y, Li LY. Aspirin-triggered lipoxin A4 attenuates LPS-induced proinflammatory responses by inhibiting activation of NF-kappaB and MAPKs in BV-2 microglial cells. J Neuroinflammation. 2011;8:95.
Grosser N, Abate A, Oberle S. Heme oxygenase-1 induction may explain the antioxidant profile of aspirin. Biochem Biophys Res Commun. 2003;308:956-60.
Chiang N, Arita M, Serhan CN. Anti-inflammatory circuitry: lipoxin, aspirintriggered lipoxins and their receptor ALX. Prostaglandins Leukot Essent Fatty Acids. 2005;73:163-77.