2012, Number 3
<< Back Next >>
Rev Mex Neuroci 2012; 13 (3)
Protective action of the tau protein in Alzheimer
Luna-Muńoz J, Zamudio S, De la Cruz F, Minjarez-Vega B, Mena R
Language: Spanish
References: 62
Page: 160-167
PDF size: 361.74 Kb.
ABSTRACT
Neurofibrillary tangles (NFT) composed of tau protein
abnormally assembled are the hallamarks of
Alzheimer´diseased brains. NFTs represent dense
accumulation of paired helical filaments (PHF).
Hyperphosphorylation and endogenous proteolysis
(truncation) are the two major pathological changes
found in tau-PHF. Despite the fact that the majority
of studies focus on the hyperphosphorylation as a
key event in Alzheimer’s disease (AD) pathogenesis,
some reports are contradictory in the sense that they
have not found any evidence of toxicity of the
hyperphosphorylated NFT. Moreover, these same
studies suggest that hyperphosphorylated tau has,
in fact, a protective role in AD against to the
progressive cytoplasmic accumulation of a truncated
tau fragment at Glu391. This fragment of 90-92
aminoacid length is so-called the PHF «core». This
fragment is highly toxic and the cause of neuronal
death in AD. In this review, we analyzed the role the
hyperhosphorylated and truncated tau species
focusing in toxicity and protection in AD pathogenesis
REFERENCES
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82: 239-59.
Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 2006; 112: 389-404.
Wischik CM, Novak M, Edwards PC, Klug A, Tichelaar W, Crowther RA. Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA 1988; 85: 4884-8.
Kidd M. Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature 1963; 197: 192-3.
Wischik CM, Novak M, Thogersen HC, et al. Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA 1988; 85: 4506-10.
Crowther RA, Wischik CM. Image reconstruction of the Alzheimer paired helical filament. Embo J 1985; 4: 3661-5.
Kondo J, Honda T, Mori H, et al. The carboxyl third of tau is tightly bound to paired helical filaments. Neuron 1988; 1: 827-34.
Lee G, Neve RL, Kosik KS. The microtubule binding domain of tau protein. Neuron 1989; 2: 1615-24.
Perry G, Friedman R, Shaw G, Chau V. Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proc Natl Acad Sci USA 1987; 84: 3033-6.
Mori H, Kondo J, Ihara Y. Ubiquitin is a component of paired helical filaments in Alzheimer’s disease. Science 1987; 235: 1641-4.
Ledesma MD, Bonay P, Avila J. Tau protein from Alzheimer’s disease patients is glycated at its tubulin-binding domain. J Neurochem 1995; 65: 1658-64.
Ledesma MD, Bonay P, Colaco C, Avila J. Analysis of microtubuleassociated protein tau glycation in paired helical filaments. J Biol Chem 1994; 269: 21614-19.
Wang JZ, Grundke-Iqbal I, Iqbal K. Glycosylation of microtubuleassociated protein tau: an abnormal posttranslational modification in Alzheimer’s disease. Nat Med 1996; 2: 871-5.
Horiguchi T, Uryu K, Giasson BI, et al. Nitration of tau protein is linked to neurodegeneration in tauopathies. Am J Pathol 2003; 163: 1021-31.
Tucholski J, Kuret J, Johnson GV. Tau is modified by tissue transglutaminase in situ: possible functional and metabolic effects of polyamination. J Neurochem 1999; 73: 1871-80.
Alonso AC, Grundke-Iqbal I, Iqbal K. Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med 1996; 2: 783-7.
Alonso A del C, Li B, Grundke-Iqbal I, Iqbal K. Polymerization of hyperphosphorylated tau into filaments eliminates its inhibitory activity. Proc Natl Acad Sci USA 2006; 103: 8864-9.
Augustinack JC, Schneider A, Mandelkow EM, Hyman BT. Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol 2002; 103: 26-35.
Bancher C, Brunner C, Lassmann H, et al. Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res 1989; 477: 90-9.
Goedert M, Jakes R, Crowther RA, et al. The abnormal phosphorylation of tau protein at Ser-202 in Alzheimer disease recapitulates phosphorylation during development. Proc Natl Acad Sci USA 1993; 90: 5066-70.
Goedert M, Klug A, Crowther RA. Tau protein, the paired helical filament and Alzheimer’s disease. J Alzheimers Dis 2006; 9: 195-207.
Novak M. Truncated tau protein as a new marker for Alzheimer’s disease. Acta Virol 1994; 38: 173-89.
Novak M, Jakes R, Edwards PC, Milstein C, Wischik CM. Difference between the tau protein of Alzheimer paired helical filament core and normal tau revealed by epitope analysis of monoclonal antibodies 423 and 7.51. Proc Natl Acad Sci USA 1991; 88: 5837-41.
Novak M, Kabat J, Wischik CM. Molecular characterization of the minimal protease resistant tau unit of the Alzheimer’s disease paired helical filament. Embo J 1993; 12: 365-70.
Wischik CM, Edwards PC, Lai RY, et al. Quantitative analysis of tau protein in paired helical filament preparations: implications for the role of tau protein phosphorylation in PHF assembly in Alzheimer’s disease. Neurobiol Aging 1995; 16: 409-417; discussion 418-431.
Kuret J, Chirita CN, Congdon EE, et al. Pathways of tau fibrillization. Biochim Biophys Acta 2005; 1739: 167-78.
Garcia-Sierra F, Ghoshal N, Quinn B, Berry RW, Binder LI. Conformational changes and truncation of tau protein during tangle evolution in Alzheimer’s disease. J Alzheimers Dis 2003; 5: 65-77.
Garcia-Sierra F, Mondragon-Rodriguez S, Basurto-Islas G. Truncation of tau protein and its pathological significance in Alzheimer’s disease. J Alzheimers Dis 2008; 14: 401-9.
Guillozet-Bongaarts AL, Garcia-Sierra F, Reynolds MR, et al. Tau truncation during neurofibrillary tangle evolution in Alzheimer’s disease. Neurobiol Aging 2005; 26: 1015-22.
Iqbal K, Grundke-Iqbal I. Discoveries of tau, abnormally hyperphosphorylated tau and others of neurofibrillary degeneration: a personal historical perspective. J Alzheimers Dis 2006; 9: 219-42.
Ghoshal N, Garcia-Sierra F, Fu Y, et al. Tau-66: evidence for a novel tau conformation in Alzheimer’s disease. J Neurochem 2001; 77: 1372-85.
Novak M, Wischik CM, Edwards P, Pannell R, Milstein C. Characterisation of the first monoclonal antibody against the pronase resistant core of the Alzheimer PHF. Prog Clin Biol Res 1989; 317: 755-61.
Garcia-Sierra F, Hauw JJ, Duyckaerts C, Wischik CM, Luna-Munoz J, Mena R. The extent of neurofibrillary pathology in perforant pathway neurons is the key determinant of dementia in the very old. Acta Neuropathol 2000; 100: 29-35.
Garcia-Sierra F, Wischik CM, Harrington CR, Luna-Munoz J, Mena R. Accumulation of C-terminally truncated tau protein associated with vulnerability of the perforant pathway in early stages of neurofibrillary pathology in Alzheimer’s disease. J Chem Neuroanat 2001; 22: 65-77.
Guillozet-Bongaarts AL, Cahill ME, Cryns VL, Reynolds MR, Berry RW, Binder LI. Pseudophosphorylation of tau at serine 422 inhibits caspase cleavage: in vitro evidence and implications for tangle formation in vivo. J Neurochem 2006; 97: 1005-14.
Su B, Wang X, Drew KL, Perry G, Smith MA, Zhu X. Physiological regulation of tau phosphorylation during hibernation. J Neurochem 2008; 105: 2098-108.
Arendt T, Stieler J, Strijkstra AM, et al. Reversible paired helical filamentlike phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals. J Neurosci 2003; 23: 6972-81.
Fasulo L, Visintin M, Novak M, Cattaneo A. Tau truncation in Alzheimer’s disease: encompassing PHF core tau induces apoptosis ina COS cells. Alzheimes’s reports 1998; 1: 25-32.
Mena R, Edwards PC, Harrington CR, Mukaetova-Ladinska EB, Wischik CM. Staging the pathological assembly of truncated tau protein into paired helical filaments in Alzheimer’s disease. Acta Neuropathol 1996; 91: 633-41.
Mena R, Edwards P, Perez-Olvera O, Wischik CM. Monitoring pathological assembly of tau and beta-amyloid proteins in Alzheimer’s disease. Acta Neuropathol 1995; 89: 50-6.
Gamblin TC, Berry RW, Binder LI. Tau polymerization: role of the amino terminus. Biochemistry 2003; 42: 2252-7.
Gamblin TC, Chen F, Zambrano A, et al. Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc Natl Acad Sci USA 2003; 100: 10032-7.
Mena RaL-MJ. Stages of pathological tau-protein processing in Alzheimer’s disease: from soluble aggregations to polymerization into insoluble tau-PHFs. In: Maccioni R. PG, ed. currents hypotheses and research milestones in Alzheimer’s disease, Springer ed. New York, USA: 2009, p. 243.
Horowitz PM, LaPointe N, Guillozet-Bongaarts AL, Berry RW, Binder LI. N-terminal fragments of tau inhibit full-length tau polymerization in vitro. Biochemistry 2006; 45: 12859-66.
Khatoon S, Grundke-Iqbal I, Iqbal K. Brain levels of microtubuleassociated protein tau are elevated in Alzheimer’s disease: a radioimmuno-slot-blot assay for nanograms of the protein. J Neurochem 1992; 59: 750-53.
Khatoon S, Grundke-Iqbal I, Iqbal K. Levels of normal and abnormally phosphorylated tau in different cellular and regional compartments of Alzheimer disease and control brains. FEBS Lett 1994; 351: 80-4.
King ME. Can tau filaments be both physiologically beneficial and toxic? Biochim Biophys Acta 2005; 1739: 260-7.
Congdon EE, Duff KE. Is tau aggregation toxic or protective? J Alzheimer’s Dis 2008; 14: 453-7.
Gotz J, Ittner LM, Fandrich M, Schonrock N. Is tau aggregation toxic or protective: a sensible question in the absence of sensitive methods? J Alzheimers Dis 2008; 14: 423-9.
Castellani RJ, Nunomura A, Lee HG, Perry G, Smith MA. Phosphorylated tau: toxic, protective, or none of the above. J Alzheimers Dis 2008; 14: 377-83.
Lee HG, Perry G, Moreira PI, et al. Tau phosphorylation in Alzheimer’s disease: pathogen or protector? Trends Mol Med 2005; 11: 164-9.
Cash AD, Aliev G, Siedlak SL, et al. Microtubule reduction in Alzheimer’s disease and aging is independent of tau filament formation. Am J Pathol 2003; 162: 1623-7.
Harada A, Oguchi K, Okabe S, et al. Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature 1994; 369: 488-91.
Yuan A, Kumar A, Peterhoff C, Duff K, Nixon RA. Axonal transport rates in vivo are unaffected by tau deletion or overexpression in mice. J Neurosci 2008; 28: 1682-7.
Leroy K, Bretteville A, Schindowski K, et al. Early axonopathy preceding neurofibrillary tangles in mutant tau transgenic mice. Am J Pathol 2007; 171: 976-92.
Alonso A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K. Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci USA 2001; 98: 6923-8.
Jicha GA, Berenfeld B, Davies P. Sequence requirements for formation of conformational variants of tau similar to those found in Alzheimer’s disease. J Neurosci Res 1999; 55: 713-23.
Jicha GA, Bowser R, Kazam IG, Davies P. Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau. J Neurosci Res 1997; 48: 128-32.
Morsch R, Simon W, Coleman PD. Neurons may live for decades with neurofibrillary tangles. J Neuropathol Exp Neurol 1999; 58: 188-97.
Guo H, Albrecht S, Bourdeau M, Petzke T, Bergeron C, LeBlanc AC. Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer’s disease. Am J Pathol 2004; 165: 523-31.
Lassmann H, Bancher C, Breitschopf H, et al. Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol 1995; 89: 35-41.
Li HL, Wang HH, Liu SJ, et al. Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin, a mechanism involved in Alzheimer’s neurodegeneration. Proc Natl Acad Sci USA 2007; 104: 3591-6.