2012, Number 4
<< Back Next >>
Rev Cubana Hematol Inmunol Hemoter 2012; 28 (4)
Hereditary spherocytosis: from biogenesis to pathogenesis
Garrote-Santana H, Gómez-Pacheco M, Jaime-Fagundo JC, Pavón-Morán V, Martínez-Antuña G
Language: Spanish
References: 50
Page: 310-326
PDF size: 289.81 Kb.
ABSTRACT
Hereditary spherocytosis is the most common congenital hemolytic anemia among
Caucasian population. It has wide clinical variety and from the haematological point
of view, it is characterized by the presence of spherocytes anemia in peripheral
lamina. Its pathophysiological defect is determined by some of the proteins that make up the red cell membrane due to the effect on erythrocytes of abnormal
spleen, and other factors. In view of current knowledge, the dynamic interpretation
of this process requires delving into the early stages of hematopoiesis, since the
expression of this disease could modulate from early stages of erythroblast
enucleation in reticulocyte formation until late potential inflammatory processes. A
review was made on the structural and functional characteristics of the erythrocyte
membrane, as well as some general aspects of the properties of the red cell to
facilitate understanding of events which take place through proteins molecular
involvement forming the membrane.
REFERENCES
Gallagher PG, Glader B. Hereditary spherocytosis, hereditary elliptocytosis, and other disorders associated with abnormalities of the erythrocyte membrane. En: Wintrobe's Clinical Hematology.12th ed. Philadelphia: Lippincott Williams & Wilkins; 2009. p. 912-30.
Kaushansky K, Lichtman MA, Beutler E, Kipps TJ, Seligsohn U, Prchal JT. The red blood cell membrane and its disorders: Hereditary spherocytosis, elliptocytosis, and related diseases. En: Kaushansky K, Lichtman MA, Beutler E, Kipps TJ, Seligsohn U, Prchal JT. William´s Hematology. 8th ed. New York: McGraw-Hill; 2010.
Holthuis JC, van Meer G, Huitema K. Lipid microdomains, lipid translocation and the organization of intracellular membrane transport. Mol Membr Biol. 2003 Jul- Sept;20(3):231-41.
Murphy SC, Samuel BU, Harrison T, Speicher KD, Speicher DW, Reid ME, et al. Erythrocyte detergent-resistant membrane proteins: their characterization and selective uptake during malarial infection. Blood. 2004 Mar;103(5):1920-8.
Mohandas N, Gallagher P. Red cell membrane: past, present, and future. Blood. 2008 Nov;112(10):3939-48.
Diez-Silva M, Dao M, Han J, Lim CT, Suresh S. Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bull. 2010 May;35(5):382-8.
Pasini EM, Kirkegaard M, Mortensen P, Lutz HU, Thomas AW, Mann M. In-depth analysis of the membrane and cytosolic proteome of red blood cells. Blood. 2006 Aug;108(3):791-801.
Zhang Y, Zhang Y, Adachi J, Olsen JV, Shi R, de Souza G, et al. MAPU: Maxplanck unified database of organellar, cellular, tissue and body fluid proteomes. Nucleic Acids Res. 2007 Jan; 35(suppl1):D771-D779. doi:10.1093/nar/gkl784.
Fairbanks G, Steck TL, Wallach DF. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun;10(13):2606-17.
Gayani C, Spector J, Sullivan C, Kuypers FA, Labotka R, Gallagher P, et al. Imaging of the diffusion of single band 3 molecules on normal and mutant erythrocytes. Blood. 2009 June; 113(24):6237-45.
Beutler J, Mohandas N, Waugh RE. Integral protein linkage and the bilayerskeletal separation energy in red blood cells. Biophys J. 2008 Aug;95(4):1826-36.
Ipsaroc JJ, Huang l, Mondrag A. Structures of the spectrin-ankyrin interaction binding domains. Blood. 2009 May;113(22):5385-93.
Stabach PR, Simonovic I, Ranieri MA, Aboodi MS, Steitz TA, Simonovic M, et al. The structure of the ankyrin-binding site of beta-spectrin reveals how tandem spectrin-repeats generate unique ligand-binding properties. Blood. 2009 May 28;113(22):5377-84.
Satchwell TJ, Shoemark DK, Sessions RB, Toye AM. Protein 4.2: A complex linker. Blood Cell Molecules Dis. 2009 May-Jun;42(3):201-10.
Bustos SP, Reithmeier RA. Protein 4.2 interaction with hereditary spherocytosis mutants of the cytoplasmic domain of human anion exchanger 1. Biochem J. 2010 Dec;433(2):313-22.
Ipsaro JJ, Mondrag A. Red Cells, Iron and erythropoiesis structural basis for spectrin recognition by ankyrin. Blood. 2010 May;115(20):4093-4101.
Deplaine G, Safeukui I, Jeddi F, Lacoste F, Brousse V, Perrot S, et al. The sensing of poorly deformable red blood cells by the human spleen can be mimicked in vitro. Blood. 2011 Feb;117(8):88-95.
Stadnick H, Onell R, Acker JP, Holovati JL. Eadie-Hofstee analysis of red blood cell deformability. Clin Hemorheol Microcirc. 2011;47(3):229-39.
Chakravarty S, Rizvi SI. Circadian modulation of sodium-potassium ATPase and sodium- proton exchanger in human erythrocytes: in vitro effect of melatonin. Cell Mol Biol. 2011 Feb;57(1):80-6.
Quarmyne MO, Risinger M, Linkugel A, Frazier A, Joiner C. Volume regulation and KCl cotransport in reticulocyte populations of sickle and normal red blood cells. Blood Cells Mol Dis. 2011 Aug;47(2):95-9.
Adragna NC, Fulvio MD, Lauf PK. Regulation of K-Cl cotransport: From function to genes. J Membr Biol. 2004 Oct 1;201(3):109-37.
Carbrey JM, Agre P. Discovery of the aquaporins and development of the field. Handb Exp Pharmacol. 2009;(190):3-28. PMID:19096770.
Blanc L, Liu J, Vidal M, Chasis JA, An X, Mohandas N. The water channel aquaporin-1 partitions into exosomes during reticulocyte maturation: implication for the regulation of cell volumen. Blood. 2009 Oct;114(18):3928-34.
Swietach P, Tiffert T, Mauritz JM, Seear R, Esposito A, Kaminski CF, et al. Hydrogen ion dynamics in human red blood cells. J Physiol. 2010 Dec;588(Pt 24):4995-5014.
Combet S, Zanotti JM, Bellissent-Funel MC. Temperature -and hydrationdependent internal dynamics of stripped human erythrocyte vesicles studied by incoherent neutron scattering. Biochim Biophys Acta. 2011 Feb;1810(2):202-10.
Debaugnies F, Cotton F, Boutique C, Gulbis B. Erythrocyte membrane protein analysis by sodium dodecyl sulphate-capillary gel electrophoresis in the diagnosis of hereditary spherocytosis. Clin Chem Lab Med. 2011 Mar;49(3):485-92.
Peker S, Akar N, Demiralp DO. Proteomic identification of erythrocyte membrane protein deficiency in hereditary spherocytosis. Mol Biol Rep. 2012 Mar;39(3):3161-7. DOI: 10.1007/s11033-011-1082-x.
Iolascon A, Avvisati RA .Genotype/phenotype correlation in hereditary spherocytosis. Haematologica. 2008;93(9):1283-7.
Huq S, Pietroni M, Rahman H, Tariqul M. Hereditary spherocytosis. J Health Popul Nutr. 2010 Feb;28(1):107-9.
Perrotta S, Della Ragione F, Rossi F, Avvisati RA, Di Pinto D, De Mieri G, et al. B-spectrinBari: a truncated b-chain responsible for dominant hereditary spherocytosis. Haematologica. 2009;94(12)1753-7.
Maciag M, Ochocka D, Adamowicz-Salach A, BurzyÅska B. Novel beta-spectrin mutations in hereditary spherocytosis associated with decreased levels of mRNA. Br J Haematol. 2009 Aug;146(3):326-32.
Gundel F, Eber S, Heep A. A new ankyrin mutation (ANK1 EXON E9X) causing severe hereditary spherocytosis in the neonatal period. Ann Hematol. 2010;90(2):231-2.
Hughes MR, Anderson N, Maltby S, Wong J, Berberovic Z, Connie S, et al. A novel ENU-generated truncation mutation lacking the spectrin-binding and Cterminal regulatory domains of Ank1 models severe hemolytic hereditary spherocytosis. Experimental Hematology. 2011 March;39(3):305-20.
Gallagher PG, Steiner LA, Liem RL, Owen A, Cline AP, Seidel N, et al. Mutation of a barrier insulator in the human ankyrin-1 gene is associated with hereditary spherocytosis. J Clin Invest. 2010 Dec;120(12):4453-65.
An X, Mohandas N. Disorders of red cell membrane. Br J Haematol. 2008 May;141(3):367-75.
Ribeiro ML, Alloisio N, Almeida H, Gomes C, Texier P, Lemos C, et al. Severe hereditary spherocytosis and distal renal tubular acidosis associated with the total absence of band 3. Blood. 2000 Aug 15;96(4):1602-4.
Wrong O, Bruce LJ, Unwin RJ, Toye AM, Tanner MJ. Band 3 mutations, distal renal tubular acidosis, and Southeast Asian ovalocytosis. Kidney Int. 2002 Jul;62(1):10-9.
Sánchez-López JP, Camacho-Torres AL, Ibarra B, Tintos JA, Perea FJ. Analysis of the SLC4A1 gene in three Mexican patients with hereditary spherocytosis: Report of a novel mutation. Genet Mol Biol. 2010 Jan-Mar;33(1):9-11.
Chu C, Woods N, Sawasdee N, Guizouarn H, Borgese B, Yenchitsomanus P, et al. Band 3 Edmonton I, a novel mutant of the anion exchanger 1 causing spherocytosis and distal renal tubular acidosis. Biochem J. 2010 Feb 24;426(3):379-88.
Bouhassira EE, Schwartz RS, Yawata Y, Ata K, Kanzaki A, Qiu JJ, et al. An alanineto- threonine substitution in protein 4.2 cDNA is associated with a Japanese form of hereditary hemolytic anemia (protein 4.2NIPPON). Blood. 1992 Apr;79(7):1846-54.
Yawata Y, Kanzaki A, Yawata A, Doerfler W, Ozcan R, Eber SW. Characteristic features of the genotype and phenotype of hereditary spherocytosis in the Japanese population. Int J Hematol. 2000 Feb;71(2):118-35.
Satchwell TJ, Shoemark DK, Sessions RB, Toye AM. Protein 4.2: a complex linker. Blood Cells Mol Dis. 2009 May-June;42(3):201-10.
Akker E, Satchwell TJ, Pellegrin S, Flatt JF, Maigre M, Daniels G, et al. Investigating the key membrane protein changes during in vitro erythropoiesis of protein 4.2 cells (mutations Chartres 1 and 2). Haematologica. 2010 Aug;95(8):1278-86.
Tracy ET, Rice HE. Partial splenectomy for hereditary spherocytosis. Pediatr Clin N Am. 2008;55:503-19.
Miraglia del Giudice E, Francese M, Nobili B, Morlé L, Cutillo S, Delaunay J, et al. High frequency of de novo mutations in ankyrin gene (ANK1) in children with hereditary spherocytosis. J Pediatr. 1998 Jan;132(1):117-20.
Miraglia del Giudice E, Lombardi C, Francese M, Nobili B, Conte ML, Amendola G, et al. Frequent de novo monoallelic expression of beta-spectrin gene (SPTB) in children with hereditary spherocytosis and isolated spectrin deficiency. Br J Haematol. 1998 May;101(2):251-4.
Rocha S, Costa E, Rocha-Pereira P, Ferreira F, Cleto E, Barbot J, et al. Erythrocyte membrane protein destabilization versus clinical outcome in 160 Portuguese Hereditary Spherocytosis patients. Br J Haematol. 2010 Jun;149(5):785-94.
Eber SW, Armbrust R, Schroter W. Variable clinical severity of hereditary spherocytosis: Relation to erythrocytic spectrin concentration, osmotic fragility, and autohemolysis. J Pediatr. 1990 Sep;117(3):409-16.
Salomao M, Chen K, Villalobos J, Mohandas N, An X, Chasis JA. Hereditary spherocytosis and hereditary elliptocytosis: aberrant protein sorting during erythroblast enucleation. Blood. 2010 July;116(2):267-69.
Rocha S, Costa E, Rocha-Pereira P, Ferreira F, Cleto E, Barbot J, et al. Erythropoiesis versus inflammation in hereditary spherocytosis clinical outcome. Clin Biochem. 2011 Sep;44(13):1137-43.