2004, Number 2
<< Back Next >>
Rev Endocrinol Nutr 2004; 12 (2)
Pharmacogenomics of the obesity: Adjusting the secondary glucometabolic alterations to an excess of fat
Bastarrachea RA, Tejero E, Cai G, Comuzzie AG
Language: Spanish
References: 45
Page: 80-81
PDF size: 117.24 Kb.
ABSTRACT
Obesity is currently presented as a feedback complex neurohormonal model
system controlled by the hypothalamus where the appetite centers are located.
These centers receive afferent inputs about the status of the body fat
reserves, mainly through leptin, the best known and the most studied adipose
tissue hormone. The integration of this information elicit efferent signals
related to the regulation of food intake and energy balance, and hormonal
messages that modulate the accumulation of fat, leading to three strategies
to develop antiobesity drugs: inhibitors of food intake, inhibitors of
absorption and thermogenic
drugs. Although leptin, its receptor and the hypothalamic neuropeptides are definitively implicated in the pathophysiology of obesity, at a genetic and a molecular level the reason some individuals accumulate more fat beyond what is healthy for them remains an enigma. This review intends to present a new approach for obesity drug discovery through pharmacogenomics and the emerging knowledge of key pathogenic mechanisms such as the role of lipotoxicity as a cause of glucometabolic insulin resistance, leading to a host of new molecular drug targets such as AMP-activated protein kinase (AMPK) activators, acetyl-CoA carboxilase (ACC) inhibitors, recombinant adiponectin derivatives, fatty acid synthase (FAS) inhibitors, protein tyrosine phosphatase 1B inhibitors, glucagon-like peptide (GLP-1) agonists, dipeptidylpeptidase (DPP)-IV inhibitors, glucokinase activators and liver-selective glucocorticoid receptor antagonists among others. Several compounds have already been validated through genetic engineering in animal models.
REFERENCES
Amos AF, McCarty DJ, Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med. 1997; 14Suppl 5: S1-85.
Ginsberg HN. Insulin resistance and cardiovascular disease. J Clin Invest 2000; 106(4): 453-458.
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001 13; 414(6865): 813-820.
Felber JP, Golay A. Pathways from obesity to diabetes. Int J Obes Relat Metab Disord 2002; 26 Suppl 2: S39-45.
Executive summary of the third report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. J Am Med Assoc 2001; 285: 2486-2496.
Meigs JB. Epidemiology of the insulin resistance syndrome. Curr Diab Rep 2003; 3(1): 73-79.
Shafrir E. Development and consequences of insulin resistance: lessons from animals with hyperinsulinaemia. Diabetes Metab 1996; 22(2): 122-131.
Mokdad AH, Bowman BA, Ford ES, Vinicor F, Marks JS, Koplan JP. The continuing epidemics of obesity and diabetes in the United States. JAMA 2001; 286(10): 1195-1200.
Moore BJ. Diabesity®, a registered trademark of Shape Up America! www.shapeup.org
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352(9131): 837-853.
Bastarrachea-Sosa RA, Castro-Martínez G, Laviada-Molina H, Yza-Villanueva R, Llamas-Esperón G, Comuzzie AG. Aspectos endocrinos, metabólicos y genéticos de la disfunción endotelial y su relación con la obesidad visceral. Medicina Interna de México (En prensa).
Inzucchi SE. Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA 2002; 287(3): 360-372.
Olefsky JM, Saltiel AR. PPAR gamma and the treatment of insulin resistance. Trends Endocrinol Metab 2000; 11(9): 362-368.
Bastarrachea RA, Laviada-Molina H, Hernández-Escalante V, Tejero E, Montero JC, Comuzzie AG. Medicina basada en evidencias para el desarrollo de fármacos antiobesidad: conceptos actuales y perspectivas futuras. Revista Obesidad. Órgano Oficial de Comunicación de la Federación Latinoamericana de Obesidad (FLASO). En prensa.
Raji A, Plutzky J. Insulin resistance, diabetes, and atherosclerosis: thiazolidinediones as therapeutic interventions. Curr Cardiol Rep 2002; 4(6): 514-521.
Funahashi T, Nakamura T, Shimomura I, Maeda K, Kuriyama H, Takahashi M, Arita Y, Kihara S, Matsuzawa. Role of adipocytokines on the pathogenesis of atherosclerosis in visceral obesity. Intern Med 1999; 38(2): 202-206.
Bastarrachea RA, Kent Jr JW, Cai G, Cole SA, Comuzzie AG. Understanding the pathogenesis of common complex diseases through the genetic basis of obesity. Book Chapter (Submitted) December 2003.
Ravussin E, Bouchard C. Human genomics and obesity: finding appropriate drug targets. Eur J Pharmacol 2000; 410(2-3): 131-145.
Mayerson AB, Inzucchi SE. Type 2 diabetes therapy. A pathophysiologically based approach. Postgrad Med 2002; 111(3): 83-84, 87-92, 95.
Sarabu R. Metabolic diseases drug discovery world summit. Expert Opin Investig Drugs 2003; 12(10): 1721-1726.
Clapham JC, Arch JP, Tadayyon M. Anti-obesity drugs: a critical review of current therapies and future opportunities. Pharmacol Ther 2001; 89(1): 81-121.
Xu J. Metabolic Diseases Drug Discovery world Summit-SRI Conference. Diabetes and obesity. Drugs 2003; 6(9): 850-851.
Bray GA, Greemay FL. Current and potential drugs for treatment of obesity. Endocr Rev 1999; 20(6): 805-875.
Liu G. Metabolic diseases drug discovery world summit. Expert Opin Emerg Drugs 2003; 8(2): 577-582.
Gantz I, Fong TM. The melanocortin system. Am J Physiol Endocrinol Metab 2003; 284(3): E468-474.
Pierroz DD, Ziotopoulou M, Ungsunan L, Moschos S, Flier JS, Mantzoros CS. Effects of acute and chronic administration of the melanocortin agonist MTII in mice with diet-induced obesity. Diabetes 2002; 51(5): 1337-1345.
Hewitt KN, Lee MD, Dourish CT, Clifton PG. Serotonin 2C receptor agonists and the behavioural satiety sequence in mice. Pharmacol Biochem Behav 2002; 71(4): 691-700.
Hirst GC, Aquino C, Birkemo L, Croom DK, Dezube M, Dougherty RW Jr, Ervin GN, Grizzle MK, Henke B, James MK, Johnson MF, Momtahen T, Queen KL, Sherrill RG, Szewczyk J, Willson TM, Sugg EE. Discovery of 1.5-benzodiazepines with peripheral cholecystokinin (CCK-A) receptor agonist activity (II): Optimization of the C3 amino substituent. J Med Chem 1996; 39(26): 5236-5245.
Clark RV et al. ENDO 2002-84th Annual Meeting of Endocrine Society. San Francisco, FL, USA, Abstract P3-441.
Bastarrachea SR, Laviada MH, Machado DI. El eje adipopancreático: Hacia un nuevo enfoque terapéutico para prevenir la resistencia a la insulina y la diabetes tipo 2. Revista de Endocrinología y Nutrición 2002; 10(3): 121.
Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med 2002; 53: 409-435.
Willson TM, Brown PJ, Stembach DD, Henke BR. The PPARs: from orphan receptors to drug discovery. J Med Chem 2000; 43(4): 527-550.
Gerhold DL, Liu F, Jiang G, Li Z, Xu J, Lu M, Sachs JR, Bagchi A, Fridman A, Holder DJ, Doebber TW, Berger J, Elbrecht A, Moller DE, Zhang BB. Gene expression profile of adipocyte differentiation and its regulation by peroxisome proliferator-activated receptor-gamma agonists. Endocrinology 2002; 143(6): 210-218.
Way JM, Harrington WW, Brown KK, Gottschalk WK, Sundseth SS, Mansfield TA, Ramachandran RK, Willson TM, Kliewer SA. Comprehensive messenger ribonucleic acid profiling reveals that peroxisome proliferator-activated receptor gamma activation has coordinate effects on gene expression in multiple insulin-sensitive tissues. Endocrinology 2001; 142(3): 1269-1277.
Berger J, Tanen M, Elbrecht A, Hermanowski-Vosatka A, Moller DE, Wright SD, Thieringer R. Peroxisome proliferator-activated receptor-gamma ligands inhibit adipocyte 11 beta -hydroxysteroid dehydrogenase type 1 expression and activity. J Biol Chem 2001; 276(16): 12629-12635.
Unger RH. Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology 2003; 144(12): 5159-5165.
Lee Y, Wang MY, Kakuma T, Wang ZW, Babcock E, McCorkle K, Higa M, Zhou YT, Unger RH. Liporegulation in diet-induced obesity. The antisteatotic role of hyperleptinemia. J Biol Chem 2001; 276(8): 5629-5635.
Winder WW, Hardie DG. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol 1999; 277 (1 Pt 1): E1-10.
Loftus TM, Jaworsky DE, Frehywot GL, Townsend CA, Ronnett GV, Lane MD, Kuhajda FP. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 2000; 288: 229-300.
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108(8): 1167-1174.
Ouchi N, Kihara S, Funahashi T, Matsuzawa Y, Walsh K. Obesity, adiponectin and vascular inflammatory disease. Curr Opin Lipidol 2003; 14(6): 561-566.
Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol 2004; 24(1): 29-33.
Saltiel AR. You are what you secrete. Nat Med. 2001; 7(8): 887-888.
Bastarrachea RA, Tejero ME, Cole SA, Cai G, Proffitt M, Comuzzie AG. Estudios sobre genética del síndrome metabólico y obesidad en un modelo de primates no humanos: potencial relevancia para la investigación clínica y biomédica. Revista de Endocrinología y Nutrición. (En prensa).
Brockmann GA, Bevova MR. Using mouse models to dissect the genetics of obesity. Trends Genet 2002; 18: 367-376.