2002, Number 3-4
<< Back
Microbiología 2002; 44 (3-4)
Strategies for adaptation of halophile microorganisms and Debaryomyces hansenii (halophile yeast)
González-Hernández JC, Peña A
Language: Spanish
References: 181
Page: 137-156
PDF size: 174.32 Kb.
ABSTRACT
The term halophile is used for all those organisms belonging to hypersaline habitats; they constitute an interesting class of organisms able to compete successfully in salt water and to resist its denaturing effects. A wide diversity of microorganisms, prokaryotic and eukaryotic belong to this category. Halophile organisms have strategies allowing them not only to withstand osmotic stress, but also to function better in the presence of salt, in spite of maintaining high intracellular concentrations of salt, partly due to the synthesis of compatible solutes that allow them to balance their osmotic pressure.
We describe the characteristics of some halophile organisms and D. hansenii (halophile yeast), that allow them to resist high concentrations of salt. The interest to know the great diversity microorganisms living in hypersaline habitats is growing, and has begun to be the center of recent investigations, since halophile organisms produce an wide variety of biomolecules that can be used for different applications. In this review we describe some mechanisms with which some halophile organisms count to resist the high concentration of salts, mainly NaCl.
REFERENCES
Ackley, D.E. & C.L. Shieh. 1998. Thin film transistor biochemical sensor. Patent US5719033. 1998 February 17.
Adams, M.W.W. & R.M. Kelly. 1995. Enzymes in extreme environments. Chem. Eng. News. 73:32–42.
Adler, L. & L. Gustafsson. 1980. Polyhydric alcohol production and intracellular amino acid pool in relation to halotolerance of the yeast Debaryomyces hansenii. Arch. Microbiol. 124:123-130.
Adler, L., A. Blomberg & A. Nilsson. 1985. Glycerol metabolism and osmoregulation in the salt–tolerant yeast Debaryomyces hansenii. J. Bacteriol. 162:300-306.
Aitken, D.M. & A.D. Brown. 1969. Citrate and glyoxylate cycles in the halophil, Halobacterium salinarium. Biochim. Biophys. Acta. 177:351-354.
Aitken, D.M., A.J. Wicken & A.D. Brown. 1970. Properties of halophil nicotinamide-adenine dinucleotide phosphate-specific isocitrate dehydrogenase. Biochem. J. 116:125-134.
Albertyn, J., S. Hohmann & B.A. Prior. 1994. Characterization of the osmotic-stress response in Saccharomyces cerevisiae: osmotic stress and glucose repression regulate glycerol-3-phosphate dehydrogenase independently. Curr. Genet. 25:12-18.
Alepuz, P.M., A. Jovanovic., V. Reiser & G. Ammerer. 2001. Stress-induced MAP kinase Hog1 is part of transcription activation complexes. Mol. Cell 7:767-777.
Almagro, A., C. Prista., B. Benito., M.C. Loureiro-Días & J. Ramos. 2001. Cloning and expresion of two genes coding for sodium pumps in the salt-tolerant yeast Debaryomyces hansenii. J. Bacteriol. 183:3251-3255.
Ansell, R.,K. Granath., S. Hohmann., J.M. Thevelein & L. Adler. 1997. The two isoenzymes for yeast NAD-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1And GPD2 have distinct roles in osmoadaptation and redor regulation. EMBO J. 16:2179-2187.
Arakawa, T. & S.N. Timasheff. 1985. The stabilization of proteins by osmolytes. Biophys. J. 47:411-414.
Banuett, F. 1998. Signalling in yeast: an informational cascade with links to the filamentous fungi. Microbiol. Mol. Biol. Rev. 62:249-274.
Bayley, R.M. & R.A. Morton. 1978. Recent developments in the molecular biology of extremely halophilic bacteria. Crit. Rev. Microbiol. 6:151-205.
Baxter, R.M. 1959. An interpretation of the effects of salts on the lactic dehydrogenase of Halobacterium salinarium. Can. J. Microbiol. 5:47-57.
Beck, F.X., A. Dörge., K. Thurau & W.G. Guder. 1990. Cell osmoregulation in the countercurrent system of the renal medulla: the role of organic osmolytes. pp.132–158. In: Beyenbach KW (ed) Cell volume regulation. Karger, Basel.
Beck, F.X., A. Burger-Kentischer & E. Müller. 1998. Cellular response to osmotic stress in the renal medulla. Pflügers Arch. Eur. J. Physiol. 436:814–827.
Ben-Amotz, A. & M. Avron. 1973. The role of glycerol in the osmotic regulation of the halophilic alga Dunaliella parva. Plant Physiol. 51:875-878.
Ben-Amotz, A. & M. Avron. 1981. Glycerol and b-carotene metabolism in the halotolerant alga Dunaliella parva: a model system for biosolar energy conversion. Trends. Biochem. Sci. 6:297-299.
Bickel-Sandkötter, S., W. Gärtner & M. Dane. 1996. Conversion of energy in halobacteria: ATP synthesis and phototaxis. Arch. Microbiol. 166:1-11.
Blomberg, A. 2000. Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol. Lett. 182:1-8.
Bohnert, H.J., D.E. Nelson & R.G. Jensen. 1995. Adaptations to environmental stresses. Plant Cell 7:1099–1111.
Borowitzka, L.J. & A.D. Brown. 1974. The salt relations of marine and halophilic species of the unicellular green alga, Dunalilella parva. The role of glycerol as a compatible solute. Arch. Microbiol. 96:37-52.
Brewster, J.L., T. de Valoir., N.D. Dwyer., E. Winter & M.C. Gustin. 1993. An osmosensing signal transduction pathway in yeast. Science. 259:1760-1763.
Brock, T.D. 1975. Salinity and the ecology of Dunaliella from Great Salt Lake. J. Gen. Microbiol. 89: 258-292.
Brown, A.D. 1963. The peripheral structures of Gram-negative bacteria. IV. The cation sensitive dissolution of the cell membrane of the halophilic bacterium, Halobacterium halobium. Biochim. Biophys. Acta. 75:425-435.
Brown, A.D. & C.D. Shorey. 1963. The cell envelopes of two extremely halophilic bacteria. J. Cell. Biol. 18:681-689.
Brown, A.D. 1964. The development of halophilic properties in bacterial membranes by acylation. Biochim. Biophys. Acta. 93:136-142.
Brown, A.D. 1964. Aspects of bacterial response to the ionic enviroment. Bacteriol. Rev. 28:296-329.
Brown, A.D. & K.Y. Cho. 1970. The walls of extremely halophilic cocci. Gram-positive bacteria lacking muramic acid. J. Gen. Microbiol. 62:267-270.
Brown, A.D. & J.R. Simpson. 1972. Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J. Gen. Microbiol. 72:589-591.
Brown, A.D. 1974. Microbial water relations. Features of the intracellular composition of sugar-tolerant yeasts. J. Bacteriol. 118:769-777.
Brown, A.D. 1976. Microbial water stress. Bacteriol. Rev. 40:803-846.
Brown, A. D. 1990. Microbial water stress physiology. Principles and perspectives. Jhon Wiley & Sons, Ltd., Chichester, Uniten Kingdom.
Bull, H.B. & K. Breese. 1974. Surface tension of amino acid solutions: a hydrophobicity scale of the amino acid residues. Arch. Biochem. Biophys. 161:665-670.
Burg, M.B., E.D. Kwon & E.M. Peters. 1996. Glycerophosphocholine and betaine counteract the effect of urea on pyruvate kinase. Kidney Int. 50 (57):S100–S104.
Causton, H.C., B. Ren., S.S. Koh., C.T. Harbison., E. Kanin., E.G. Jennings., T.I. Lee., H.L. True., E.S. Lander & R.A. Young. 2001. Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell 12:323-337.
Cayley, S., B.A. Lewis & M.T. Record Jr. 1992. Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. J. Bacteriol. 174:1586-1595.
Chang, L. & M. Karin. 2001. Mammalian MAP kinase signalling cascades. Nature. 410:37-40.
Christian, J.H. B. & J.A. Waltho. 1962. Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochim. Biophys. Acta. 65:506-508.
Corredor, M., A.M. Davila., C. Gaillardin & S. Casaregola. 2000. DNA probes specific for the yeast species Deabaryomyces hansenii: useful tools for rapid identification. FEMS Microbiology Letters. 193:171-177.
Crowe, J.H., J.F. Carpenter & L.M. Crowe. 1998. The role of vitrification in anhydrobiosis. Annual Review of Physiology. 60:73-03.
Cruz, J.M., J.M. Domínguez., H. Domínguez & J.C. Parajó. 2000. Xylitol production from barley bran hydrolysates by continuos fermentation with Debaryomyces hansenii. Biotechnol. Lett. 22:1895-1898.
DasSarma, S. & P. Arora. 2001. Halophiles. Enciclopedia of Life Sciences. 2001 Nature Publishing Group/www.els.net: 1-9.
De Virgilio, C., P. Piper., T. Boller & A. Wiemken. 1991. Acquisition of thermotolerance in Saccharomyces cerevisiae without heat shock protein hsp104 and in the absence of protein synthesis. FEBS Lett. 288:86-90.
Domínguez, J.M. 1998. Xylitol production by free and immobilized Debaryomyces hansenii. Biotechnol. Lett. 20:53-56.
Donald, E.N., M. Koukoumanos & H.J. Bohnert. 1999. Myo-Inositol-Dependent Sodium Uptake in Ice Plant. Plant Physiology. 119:165–172.
Dundas, I.D., V.R. Srinivasan & Halvorson. 1963. A chemically defined medium for Halobacterium salinarium strain1. Can. J. Microbiol. 9:619-624.
Eisenberg, H., M. Mevarech & G. Zaccai. 1995. Biochemical, structural, and molecular genetic aspects of halophilism. Adv. Protein. Chem. 43:1–62.
Epstein, W. 1986. Osmoregulation by potassium transport in Escherichia coli. FEMS Microbiol. Rev. 39: 3-78.
Eriksson, P., L. Andre., R. Ansell., A. Blomberg & L. Adler. 1995. Molecular cloning of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison to GPD1. Mol. Microbiol. 17:95-107.
Estruch, F. 2000. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiology Reviews. 24:469-486.
François, J. & J.L. Parrou. 2001. Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 25:125-145.
Fleet, G.H. 1990. Yeasts in dairy products. J. Appl. Bacteriol. 68:199-211.
Galinski, E.A. 1993. Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection. Experientia. 49:487-496.
Galinski, E.A. 1995. Osmoadaptation in bacteria. Adv. Microb. Physiol. 37: 273-328.
Galinski, E.A. & B.J. Tindall. 1992. Biotechnological prospects for halophiles and halotolerant microorganisms. pp.6–114. In: Herbert RH, Sharp RJ (eds.) Molecular biology and biotechnology of extremophiles. Blackie, Glasgow.
Gambacorta, A., A. Gliozzi & M. De Rosa. 1995. Archaeal lipids and their biotechnological applications. World J. Microbiol. Biotechnol. 11:115–131.
Garabito, M.J., M.C. Márquez & A. Ventosa. 1998. Halotolerant Bacillus diversity in hypersaline environments. Can. J. Microbiol. 44:95–102.
Garcia-Perez, A. & M.B. Burg. 1991. Renal medullary organic osmolytes. Physiol. Rev. 71:1081–1115.
Gasch, A.P., P.T. Spellman., C.M. Kao., O. Carmel-Harel., M.B. Eisen., G. Storz., D. Botstein & P.O. Brown. 2000. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell. 11:4241-4257.
Ghoram, J. 1995. Betaines in higher plats-byosintheis and role in stress metabolism. pp.171-203. In: Wallsgrove R.M, ed. Amino acids and their derivates in higher plants. Cambridge: Cambridge University Press.
Giaever, H.M., O.B. Styrvold., I. Kaasen & A.R. Ström. 1988. Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J. Bacteriol. 170:2841-2849.
Gilles, R. 1987. Volume regulation in cells of euryhaline invertebrates. Curr. Topics Membr. Transport 30:205–247.
Ginzburg, M. 1969. The unusual membrane permeability of two halophilic unicellular organisms. Biochim. Biophys. Acta. 173:370-376.
Gírio, F.M., C. Amaro., H. Azinheira., F. Pelica & M.T. Amaral-Collaço. 2000. Polyols production during single and mixed substrate fermentations in Debaryomyces hanseni. Bioresource Technol. 71:245-251.
Gullans, S.R., J.D. Blumenfeld., J.A. Balschi., M. Kaleta., R.M. Brenner., C.W. Heilig & S.C. Hebert. 1988. Accumulation of major organic osmolytes in rat renal inner medulla in dehydration. Am. J. Physiol. 255:F626-F634.
Gustafsson, L. & B. Norkrans. 1976. On the mechanism of salt tolerance. Production of glycerol and heat during growth of Debaryomyces hansenii. Arch. Microbiol. 110:177-183.
Gustin, M.C., J. Albertyn., M. Alexander & K. Davenport. 1998. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62:1264-1300.
Groß, M. 1997. Exzentriker des Lebens. Spektrum Akademischer Verlag, Heidelberg, Berlin.
Hamaide, F., D.J. Kushner & G.D. Sprott. 1983. Proton motive force and Na+/H+ antiport in a moderate halophile. J. Bacteriol. 156:537-544.
Hirayama, T., T. Maeda., H. Saito & K. Shinozaki. 1995. Cloning and characterization of seven cDNAs for hyperosmolarity-responsive (HOR) genes of Saccharomyces cerevisiae. Mol. Gen. Genet. 249:127- 138.
Hobot, J.A. & D.H. Jennings. 1981. Growth of Debaryomyces hansenii and Saccharomyces cerevisiae in relation to pH and salinity. Exp. Mycol. 5:217-228.
Hochachka, P.W. & G.N. Somero. 1984. Biochemical Adaptation. Princeton, N.J: Princeton University Press.
Hochstein, L.I. & R. Bogomolni. 1999. GAT do extreme halophiles tell us about the evolution of the proton-translocatong ATPases? pp.273-280. In A. Oren (ed.), Microbiology and biogeochemistry of hypersaline enviroments. CRC Press, Inc., Boca Raton, Fla.
Hottiger, T., P. Schmutz & A. Wiemken. 1987. Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. J. Bacteriol. 169:5518-5522.
Imhoff, J.F. & F. Rodríguez-Valera. 1984. Betaine is the main compatible solute of halophilic eubacteria. J. Bacteriol. 160:478-479.
Iwahashi, H., S. Nwaka., K. Obuchi & Y. Komatsu. 1998. Evidence for the interplay between trehalose metabolism and Hsp104 in yeast. Appl. Environ. Microbiol. 64:4614-4617.
Jamison, R.L. & W. Kriz. 1982. Urinary concentrating mechanism: structure and function. Oxford University Press, New York.
Johnson, M.K., E.J. Johnson., R.D. McElroy., H.L. Speer & B.S. Bruff. 1968. Effects of salts on the halophilic alga Dunaliella viridis. J. Bacteriol. 95:1461-1468.
Joshi, R., T. Ravindranathan., K.B. Bastawade., D.V. Gkhale., U.R. Kalkote & S.S. Sudge. 2000. Halophilic Pseudomonas strain having accesion No. NCIM 5209 (ATCC 55940) and a process for preparing D(-)N-carbamoylphenylglycine using said strain. Patent US6121024. 2000 September 19.
Katz, A., U. Pick & M. Avron. 1989. Characterization and reconstitution of the Na+/H+ antiporter from the plasma membrane of the halophilic alga Dunaliella. Biochim. Biophys. Acta. 983:1224-1229.
Kempf, B. & E. Bremer. 1998. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch. Microbiol. 170: 319- 330.
Keyse, S.M. 2000. Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr. Opin. Cell Biol. 12:186-192.
Kikura, M., Y. Seno & H. Tomioka. 1998. Bacterial type rhodopsin, bacterial type rhodopsin gene, recombinant DNA and production of bacterial type rhodopsin. Patent JP10150987. 1998 June 9.
Kultz, D. & M. Burg. 1998. Evolution of osmotic stress signaling via MAP kinase cascades. J. Exp. Biol. 201:3015-3021.
Kushner, D.J. 1968. Halophilic bacteria. Adv. Appl. Microbiol. 10:73-99.
Kyriakis, J.M. & J. Avruch. 2001. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81:807-869.
Lai, M.C. & R.P. Gunsalus. 1992. Glycine betaine and potassium ion are the major compatible solutes in the extremely halophilic methanogen Methanohalophilus strain Z7302. J. Bacteriol. 174:747-7477.
Lang, F., G.L. Busch., M. Ritter., H. Volkl., S. Waldegger., E. Gulbins & D. Haussinger. 1998. Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78:247-306.
Langworthy, T.A., W.R. Mayberry & P.F. Smith. 1974. Long-chain glycerol diether and poliol dialkyl glycerol triether lipids of Sulfolobus acidocaldarius. J. Bacteriol. 119:106-116.
Lanyi, J.K. 1974. Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol. Rev. 38:272-290.
Lanyi, J.K. & R.E. McDonald. 1976. Existence of electrogenic hydrogen/sodium antiport in Halobacterium cell envelope vesicles. Biochemistry. 15:4608-4614.
Lanyi, J.K. & M.P. Silverman. 1979. Gating effects in Halobacterium halobium membrane transport. J. Biol. Chem. 254:4750-4755.
Larsen, H. 1967. Biochemical aspects of extreme halophilism. Adv. Microbiol. Physiol. 1:97-132.
Larsson, C., C. Morales., L. Gustafsson & L. Adler. 1990. Osmoregulation of the salt-tolerant yeast Debaryomyces hansenii grown in a chemostat at different salinities. J. Bacteriol. 172:1769-1774.
Larsson, K., P. Eriksson., R. Ansell & L. Adler. 1993. A gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae. Mol. Microbiol. 10:1101-1111.
Lewis, D.H. & D.C. Smith. 1976. Sugar alcohols (polyols) in fungi and green plants I. Distribution, physiology and metabolism. New Phytol. 66:143-184.
Lewis, J.G., R.P. Learmonth & K. Watson. 1995. Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae. Microbiology. 141:687-694.
Ligterink, W. & H. Hirt. 2001. Mitogen-activated protein (MAP] kinase pathways in plants: versatile signaling tools. Int. Rev. Cytol. 201:209-275.
Lippert, K. & E.A. Galinski. 1992. Enzyme stabilization by ectoine type compatible solutes: protection against heating, freezing and drying. Appl. Microbiol. Biotechnol. 37:61-65.
Londesborough, J. & O. Vuorio. 1991. Trehalose-6-phosphate synthase/phosphatase complex from bakers yeast: purification of a proteolytically activated form. J. Gen. Microbiol. 137:323-330.
Londesborough, J. & O.E. Vuorio. 1993. Purification of trehalose synthase from baker’s yeast. Its temperature-dependent activation by fructose 6-phosphate and inhibition by phosphate. Eur. J. Biochem. 216:841- 848.
Low, P.S. 1985. Molecular basis of the biological compatibility of nature’s solutes. pp.469-477. In: Transport Processes Iono and Osmoregulation (Gilles, R. and Gilles-Baillien, M., Eds.). Springer-Verlag, Berlin.
Mackay, M.A., R.S. Norton & Borowitzka. 1984. Organic osmoregulatory solutes in cyanobacteria. J. Gen. Microbiol. 130:2177-2191.
Madern, D., C. Ebel & G. Zaccai. 2000. Halophilic adaptation of enzymes. Extremophiles 4:91–98.
McLachlan, J. 1960. The culture of Dunaliella tertiolecta Butcher a euryhaline organism. Can. J. Microbiol. 6:367-369.
Mager, W.H. & A.J. De Kruijff. 1995. Stress-induced transcriptional activation. Microbiol. Rev. 59:506-531.
Marchler, G., C. Schüller., G. Adam & H. Ruis. 1993. A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J. 12:1997-2003.
Marshall, C.L. & A.D. Brown. 1968. The membrane lipids of Halobacterium halobium. Biochem. J. 110:441-448.
Martinez-Pastor, M.T., G. Marchler., C. Schüller., A. Marchler-Bauer., H. Ruis & F. Estruch. 1996. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress-response element (STRE). EMBO J. 15:2227-2235.
Marré, E. & O. Servettaz. 1959. Sul mecanismo di adattamento a candizioni osmotiche estreme in Dunaliella salina. II. Rapporte fra concentración del mezo esterno e composizione del succo cellulare. Tai. Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. Ser.8. 25:567-575.
Meikle, A.J., R.H. Reed & G.M. Gaad. 1988. Osmotic adjustment and the accumulation of organic solutes in whole cells and protoplasts of Saccharomyces cerevisiae. J. G. Microbiol. 134:3049-3060.
Moskvina, E., C. Schüller., C.T.C. Maurer., W.H. Mager & H. Ruis. 1998. A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast. 14:1041-1050.
Lanyi, J.K. 1995. Bacteriorhodopsin as a model for proton pumps. Nature. 75:461–463.
Nanjo, T., M. Kobayashi., Y. Yoshiba., Y. Kakubari., K. Yamguchi-Shinozaki & K. Shinozaki. 1999. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett. 461:205-210.
Nissen, T.L., M. Anderlund., J. Nielsen., J. Villadsen & M.C. Kielland-Brandt. 2001. Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast 18:19-32.
Nobre, A., C. Lucas & C. Leáo. 1999. Transport and utilization of hexosas and pentosas in the halotolerant yaest Debaryomyces hansenii. Appl. Environ. Microbiol. 65:3594-3598.
Norbeck, J., A.K. Påhlman., N. Akhtar., A. Blomberg & L. Adler. 1996. Purification and characterization of two isoenzymes of DL-glycerol-3- phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 271:13875-13881.
Norbeck, J. & A. Blomberg. 1997. Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 M NaCl. Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway. J. Biol. Chem. 272:5544- 5554.
Norbeck, J. & A. Blomberg. 2000. The level of cAMP-dependent protein kinase A activity strongly affects osmotolerance and osmo-instigated gene expression changes in Saccharomyces cerevisiae. Yeast. 16:121-137.
Norkrans, B. 1966. Studies on marine occuring yeasts: Growth related to pH, NaCl concentration and temperature. Archiv. Für Mikrobiologie. 54:374-392.
Norkrans, B. 1968. Studies on marine ocurring yeast: Respiration, fermetation and salt tolerance. Archiv. Für Mikrobiologie. 62:358-372.
Norkrans, B. & A. Kylin. 1969. Regulation of the potassium to sodium ratio and of the osmotic potential in relation to salt tolerance in yeasts. J. Bacteriol. 100-2:836-845.
Onishi, H. 1960. studies on osmophilic yeasts. Part IX. Isolation of a new obligate halophilic yeast and some consideration on halophilism. Bull. Agric. Chem. Soc. Jpn. 24:226-230.
Onishi, H. 1963. Osmophilic yeasts. Adv. Fodd Res. 12:53-94.
Onishi, H., M.E. McCance & N.E. Gibbons. 1965. A synthetic medium for extremely halophilic bacteria. Can. J. Microbiol. 11:365-373.
Oren, A. 1986. Intracellular salt concentrations of the anaerobic halophilic eubacteria Haloanaerobium praevalens and Halobacteroides halobius. Can. J. Microbiol. 32:4-9.
Oren, A., M. Heldal & S. Norland. 1997. X-ray microanalysis of intracellular ions in the anaerobic halophilic eubacterium Haloanaerobium praevalens. Can. J. Microbiol. 43:588-592.
Oren, A. 1999. Bioenergetic aspects of halophilism. Microbiol. Mol. Biol. Rev. 63: 334–348.
Påhlman, A.K., K. Granath., R. Ansell., S. Hohmann & L. Adler. 2001. The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosintesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J. Biol. Chem. 276:3555-3563.
Papageorgiou, G.C. & N. Murata. 1995. The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxigen-evolving photosystem II com plex. Photosyntesis Research. 44:243-252.
Park, J.I., C.M. Grant., P.V. Attfield & I.W. Dawes. 1997. The freeze-thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS-cyclic AMP signal transduction pathway. Appl. Environ. Microbiol. 63:3818-3824.
Parrou, J.L., M.A. Teste & J. François. 1997. Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology. 143:1891-1900.
Pascual-Ahuir, A., R. Serrano & M. Proft. 2001a. The Sko1p repressor and Gcn4p activator antagonistically modulate stress-regulated transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 21:16-25.
Peterson, D.P., K.M. Murphy., R. Ursino., K. Streeter & P.H. Yancey. 1992. Effects of dietary protein and salt on rat renal osmolytes: covariation in urea and GPCcontents. Am. J. Physiol. 263:F594-F600.
Pocard, J.A., L.T. Smith., G.M. Smith & D. Le Rudulier. 1994. A prominent role for glucosyglycerol in the adaptation of Pseudomonas mendocina SKB70 to osmotic stress. J. Bacteriol. 176:6877-6884.
Posas, F., J.R. Chambers., J.A. Heyman., J.P. Hoeffler., E. de Nadal & J. Arino. 2000. The transcriptional response of yeast to saline stress. J. Biol. Chem. 275:17249-17255.
Posas, F. 2001. Personal communication.
Prista, C., A. Almagro., M.C. Loureiro-Días & J. Ramos. 1997. Physiological basis for the high salt tolerance of D. hansenii. Appl. Environ. Microbiol. 63:4005-4009.
Proft, M. & R. Serrano. 1999. Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in Saccharomyces cerevisiae: bZIP protein Sko1p confers HOG-dependent osmotic regulation. Mol. Cell. Biol. 19:537-546.
Proft, M., S. Pascual-Ahuir., E. de Nadal., J. Arino., R. Serrano & F. Posas. 2001. Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. EMBO J. 20:1123-1133.
Rathinasabapathi, B. 2000. Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways. Ann. Botany. 86:709-716.
Rast, D.M. & G.E. Pfyffer. 1989. Botanical Journal of the Linnean Society. 99:39-45.
Rengpipat, S., S.E. Lowe & J.G. Zeikus. 1988. Effect of extreme salt concentrations on the physiology and biochemistry of Halobacteroides acetoethylicus. J. Bacteriol. 170:3065-3071.
Rep, M., V. Reiser., U. Holzmüller., J.M. Thevelein., S. Hohmann., G. Ammerer & H. Ruis. 1999b. Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol. Cell. Biol. 19:5474-5485.
Rep, M., M. Krantz., J.M. Thevelein & S. Hohmann. 2000. The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J. Biol. Chem. 275:8290-8300.
Rep, M., M. Proft., F. Remize., M. Tamas., R. Serrano., J.M. Thevelein & S. Hohmann. 2001. The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Mol. Microbiol. 40:1067-1083.
Rhodes, D. & A.D. Hanson. 1993. Quaternary ammonium and ter tiary sulfonium compounds in higher plants. Plant Mol. Biol. 44:357 –384.
Rhodes, D. & Y. Samaras. 1994. Genetic control of osmoregulation in plants. pp.347 –361. In ‘‘Cellular and Molecular Physiology of Cell Volume Regulation’’ (S.K. Strange, Ed.). CRC Press, Boca Raton, FL.
Robertson, D.E., M.F. Roberts., N. Belay., K.O. Stetter & D.R. Boone. 1990. Detection of the osmoregulator betaine in methanogens. Appl. Environ. Microbiol. 56:563-565.
Robertson, D.E., M.C. Lai., R.P. Gunsalus & M.F. Roberts. 1992. Composition, variation, and dynamics of major osmotic solutes in Methanohalophilus strain FDF1. Appl. Environ. Microbiol. 58:2438-2443.
Rodríguez-Navarro, A. 2000. Potassium transport in fungi and plants. Biochim. Biophys. Acta 1469:1-30.
Ruis, H. & C. Schüller. 1995. Stress signaling in yeast. Bioessays 17:959-965.
Ryu, K., J. Kim & J.S. Dordick. 1994. Catalytic properties and potential of an extracellular protease from an extreme halophile. Enzyme Microb. Technol. 16:266–275.
Sauer, T. & E.A. Galinski. 1998. Bacterial milking: a novel bioprocess for production of compatible solutes. Biotechnol. Bioeng. 57:306–313.
Scarr, M.P. & D. Rose. 1966. Study of osmophilic yeasts producing invertase. J. Gen. Microbiol. 45:9-16.
Schmitt, A.P. & K. McEntee. 1996. Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 93:5777-5782.
Schüller, G., J.L. Brewster., M.R. Alexander., M.C. Gustin & H. Ruis. 1994. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J. 13:4382-4389.
Siderius, M. & W.H. Mager. 1997. The general stress response in search for a common denominator. pp.213-230. In S. Hohmann and W. H. Mager (ed.), Yeast stress responses. R.G. Landes Company, Austin, TX.
Sizeland, P.C., Chambers, S.T., Lever, M., Bason, L.M. & R.A. Robson. 1993. Organic osmolytes in human an do ther mammalian kidneys. Kidney Int. 43(2): 448-453.
Snyder, F. Ether lipids. Chemistry and Biology. 1972. (ed.). Academic Press Inc., New York.
Somero, G.N. & P.H. Yancey. 1997. Osmolytes and cell volume regulation: physiological and evolutionary principles. pp.441–484. In: Hoffman JF Jamieson JD (eds.) Handbook of physiology; Section 14: cell physiology. Oxford University Press, New York.
Strom, A.R. & I. Kaasen. 1993. Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol. Microbiol. 8:205-210.
Talibart, R., M. Jebbar., G. Gouesbet., S. Himdi-Kabbab., H. Wroblewski., C. Blanco & T. Bernard. 1994. Osmoadaptation in rhizobia: ectoine-induced salt tolerance. J. Bacteriol. 176(17):5210-5217.
Thevelein, J.M. 1984. Regulation of trehalose mobilization in fungi. Microbiol. Rev. 48:42-59.
Thevelein, J.M., & J.H. de Winde. 1999. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 33: 904-918.
Thevelein, J.M., L. Cauwenberg., S. Colombo., J.H. de Winde., M. Donation., F. Dumortier., L. Kraakman., K. Lemaire., P. Ma., D. Nauwelaers., F. Rolland., A. Teunissen., P. Van Dijck., M. Versele., S. Wera & J. Winderickx. 2000. Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance, and growth in yeast. Enzyme Microb. Technol. 26:819-825.
Thomé-Ortíz, P., A. Peña & J. Ramírez. Monovalent cation fluxes and physiological changes of Debaryomyces hansenii grown at high concentration of KCl and NaCl. Yeast. 14:1355-1371.
Trezzi, M., G. Galli & F. Bellini. 1965. The resistance of Dunaliella salina to osmotic stresses. A. Bot. Ital. 72:255-263.
Treger, J.M., T.R. Magee & K. McEntee. 1998. Functional analysis of the stress response element and its role in the multistress response of Saccharomyces cerevisiae. Biochem. Biophys. Res. Comm. 243:13-19.
171, Trollmo, C., L. André., A. Blomberg & L. Adler. 1988. Physiological overlapp between osmotolerance and thermotolerance in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 56:321-326.
Van Auken, O.W. & I.B. McNulty. 1968. Some growth characteristics of a halophilic Chlamydomonas. Proc. Utah Acad. Sci. 45:312-313.
Van Uden, N. 1968. Marine Yeasts. Advances in Microbilogy of the Sea. pp. 168-201. Ed. M.R. Droop and E.S. Ferguson Wood. Vol. 1. Academic Press London and New York.
Ventosa, A., J.J. Nieto & A. Oren. 1998. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62:504-544.
Volcán, B.E. 1944. The microorganisms of the Dead Sea. pp.71-85. In Papers collected to commemorate the 70th anniversary of Dr. Chaim Weizmann. Daniel Sieff Research Institute, Rehovoth, Israel.
Walsby, A.E. 1971. The pressure relationships of gas vacuoles. Proc. R. Soc. London Scr. B. 178:301-326.
Welsh, D.T. 2000. Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol. Rev. 24:263-290.
Winderickx, J., J.H. de Winde., M. Crauwels., A. Hino., S. Hohmann., P. Van Dijck & J.M. Thevelein. 1996. Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae: novel variations of STRE-mediated transcription control? Mol. Gen. Genet. 252:470-482.
Wong, B., T.E. Kiehn., F. Edwards., E.M. Bernard., R.C. Marcove., E. de Harven & D. Armstrong. 1982. Bone infection caused by Debaryomyces hansenii in a normal host: a case report. J. Clin. Microbiol. 16:545-548.
Wood, J.M. 1999. Osmosensing by bacteria: signals and membrane-based sensors. Microbiol. Mol. Biol. Rev. 63:230-262.
Zahringer, H., J.M. Thevelein & S. Nwaka. 2000. Induction of neutral trehalase nth1 by heat and osmotic stress is controlled by STRE elements and Msn2/Msn4 transcription factors: variations of PKA effect during stress and growth. Mol. Microbiol. 35:397-406.