2013, Number 2
<< Back Next >>
Bol Med Hosp Infant Mex 2013; 70 (2)
Pathogenic characteristics of Pseudomonas aeruginosa strains resistant to carbapenems associated with biofilm formation
Ochoa SA, López-Montiel F, Escalona G, Cruz-Córdova A, Dávila LB, López-Martínez B, Jiménez-Tapia Y, Giono S, Eslava C, Hernández-Castro R, Xicohtencatl-Cortes J
Language: Spanish
References: 44
Page: 138-150
PDF size: 552.89 Kb.
ABSTRACT
Background. In recent years the worldwide emergence of multidrug-resistant strains of
Pseudomonas aeruginosa has been observed. This opportunistic pathogen produces mechanisms of resistance to several antibiotics. The resistance to carbapenems in
P. aeruginosa strains has been associated with bacterial biofilm formation favored by the presence of exopolysaccharides (EPS) embedded in an extracellular matrix and to the production of type IV pili (T4P). We undertook this study to assess biofilm formation in clinical strains of
P. aeruginosa resistant to carbapenems isolated at the Hospital Infantil de México Federico Gómez (HIMFG) through quantification of total-reducing EPS and its association with the phenotypic expression of T4P.
Methods. Antibiotic susceptibility tests were performed using the Kirby-Bauer method in 92 clinical isolates of
P. aeruginosa; likewise, the minimum inhibitory concentration (MIC) was determined for imipenem (IMP) and meropenem (MEM) using the serial dilution method in agar plates with a Steers replicator. Production of metallo-β-lactamase (MBL) was determined by the disk diffusion method and synergism. Biofilm formation was performed in clinical isolates of
P. aeruginosa resistant to carbapenems through the quantification of crystal violet, total sugar (anthrone), and reducing sugar (DNS), in addition to the phenotypic expression of T4P activity of twitching motility. The genetic diversity of biofilm-forming strains and producers of reducing sugars was evaluated by pulsed-field gel electrophoresis (PFGE).
Results. There were 30.4% (28/92) of
P. aeruginosa strains of pediatric origin and 50% (46/92) of urine samples that were recovered from the pediatric surgical ward. The results using the Kirby-Bauer method showed that ›50% of
P. aeruginosa strains were resistant to 12 different antibiotics. The MIC to carbapenems was 64 µg/mL, with 43.1% (25/58) for MEM and 56.8% (33/58) for IMP. Likewise, MBL production was observed in 43% (25/58) for MEM, 2% (1/58) for IMP, and 12% (7/58) for both. Qualitative and quantitative analysis showed that 82% (48/58) of
P. aeruginosa strains resistant to carbapenems were high biofilm formers using the crystal violet method. From the high biofilm forming strains, 46.5% (27/58) showed concentrations of total EPS between 2000 and 6000 µg/mL and 27.5% (16/58) showed concentrations of reducing EPS between 316 and 1108 µg/mL. In addition, 75% (44/58) of these strains showed phenotypic activity of twitching motility.
Conclusions. Detection of total sugars, reducing sugars, and the phenomenon of twitching motility are factors that promote the development of biofilms in clinical strains of
P. aeruginosa resistant to carbepenems, which are also MBL producers. Our data suggest that these factors are involved in biofilm formation, which confer bacterium with the ability to survive, persist, and colonize its host.
REFERENCES
Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000;406:959-964.
Engel J, Balachandran P. Role of Pseudomonas aeruginosa type III effectors in disease. Curr Opin Microbiol 2009;12:61-66.
Breidenstein EBM, De la Fuente-Nuñez C, Hancock REW. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 2011;19:419-426.
Garza-Ramos U, Silva-Sánchez J, Martínez-Romero E. Genetics and genomics for the study of bacterial resistance. Salud Publica Mex 2009;51(suppl 3):S439-S446.
Tan TT. “Future” threat of gram-negative resistance in Singapore. Ann Acad Med Singapore 2008;37:884-890.
Sánchez A, Salso S, Culebras E, Picazo JJ. Resistencia a carbapenemes por metaloenzimas en aislamientos clínicos de Pseudomonas aeruginosa. Rev Esp Quimioter 2004;17:336-340.
Xavier DE, Picão RC, Girardello R, Fehlberg LC, Gales AC. Efflux pumps expression and its association with porin down-regulation and β-lactamase production among Pseudomonas aeruginosa causing bloodstream infections in Brazil. BMC Microbiol 2010;10:217.
Pitout JD, Revathi G, Chow BL, Kabera B, Kariuki B, Nordmann P, et al. Metallo-β-lactamase-producing Pseudomonas aeruginosa isolated from a large tertiary centre in Kenya. Clin Microbiol Infect 2008;14:755-759.
Samuelsen O, Toleman MA, Sundsfjord A, Rydberg J, Leegaard TM, Walder M, et al. Molecular epidemiology of metallo-β-lactamase-producing Pseudomonas aeruginosa isolates from Norway and Sweden shows import of internacional clones and local clonal expansion. Antimicrob Agents Chemother 2010;54:346-352.
Pitout JD, Gregson DB, Poirel L, McClure JA, Le P, Church DL. Detection of Pseudomonas aeruginosa producing metallo-beta-lactamases in a large centralized laboratory. J Clin Microbiol 2005;43:3129-3135.
Høiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PO, et al. The clinical impact of bacterial biofilms. Int J Oral Sci 2011;3:55-65.
Ryder C, Byrd M, Wozniak DJ. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 2007;10:644-648.
Kipnis E, Sawa T, Wiwnwr-Kronish J. Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Med Mal Infect 2006;36:78-91.
Xicohtencatl-Cortes J, Monteiro-Neto V, Saldaña Z, Ledesma MA, Puente JL, Girón JA. The type 4 pili of enterohemorrhagic Escherichia coli O157:H7 are multipurpose structures with pathogenic attributes. J Bacteriol 2009;191:411-421.
Hahn HP. The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa. Gene 1997;192:99-108.
Bertrand JJ, West JT, Engel JN. Genetic analysis of the regulation of type IV pilus function by the Chp chemosensory system of Pseudomonas aeruginosa. J Bacteriol 2010;192:994-1010.
O’Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 1998;30:295-304.
Li YH, Tian X. Quorum sensing and bacterial social interactions in biofilms. Sensors 2012;12:2519-2538.
Tapia-Jiménez AM, Castro-Escarpulli G, Enriques-Nieto C. Cuantificación de Exopolisacárido Producido en la Biopelícula de Aeromonas spp. Tesis. Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, México D.F.; 2010.
Morales-Espinosa R, Soberón-Chávez G, Delgado-Sapién G, Sandner-Miranda L, Méndez JL, González-Valencia G, et al. Genetic and phenotypic characterization of a Pseudomonas aeruginosa population with high frequency of genomic islands. PLoS ONE 2012;7:e37459.
Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995;33:2233-2239.
Vaz-Moreira I, Nunes OC, Manaia CM. Diversity and antibiotic resistance in Pseudomonas spp. from drinking water. Sci Total Environ 2012;426:366-374.
Warnes SL, Highmore CJ, Keevil CW. Horizontal transfer of antibiotic resistance genes on abiotic touch surfaces: implications for public health. mBio 2012;3:e00489-12.
Rodríguez MC, Ruiz del Castillo B, Rodríguez-Mirones C, Romo M, Monteagudo I, Martínez-Martínez L. Molecular characterization of Pseudomonas aeruginosa isolates in Cantabria, Spain, producing VIM-2 metallo-beta-lactamase. Enferm Infec Microbiol Clin 2010;28:99-103.
Wirth FW, Picoli SU, Cantarelli V, Gonçalves AL, Brust FR, Santos LM, et al. Metallo-β-lactamase-producing Pseudomonas aeruginosa in two hospitals from southern Brazil. Braz J Infect Dis 2009;13:170-172.
Tsakris A, Poulou A, Kristo I, Pittaras T, Spanakis N, Pournaras S, et al. Large dissemination of VIM-2-metallo-β-lactamase-producing Pseudomonas aeruginosa strains causing health care-associated community-onset infections. J Clin Microbiol 2009;47:3524-3529.
Rojas LF, Newton-Sánchez O, Martínez AG, Salinas DY, Ramírez RI, Tinoco FJC, et al. Identificación de genes responsables de resistencia a carbapenémicos en cepas nosocomiales de Pseudomonas aeruginosa aisladas de algunos hospitales de México. Enferm Infec Microbiol 2009;29(suppl 1):S58.
Romano-Mazzotti L, Gayosso C, Alcántar CMD, Santos-Preciado JI, Alpuche-Aranda CM. Transmisión cruzada: un factor primordial en bacteremias por Pseudomonas aeruginosa resistente a carbapenemes en un hospital pediátrico de tercer nivel. Enferm Infec Microbiol 2008;28(suppl 1):S83.
Gomes MZ, Machado CR, da Conceição Mde S, Ortega JA, Neves SM, Lourenco MC, et al. Outbreaks, persistence, and high mortality rates of multiresistant Pseudomonas aeruginosa infections in a hospital with AIDS-predominant admissions. Braz J Infect Dis 2011;15:312-322.
Gales AC, Sader HS, Jones RN; SENTRY Participants Group (Latin America). Urinary tract infection trends in Latin American hospitals: report from the SENTRY antimicrobial surveillance program (1997-2000). Diagn Microbiol Infect Dis 2002;44:289-299.
Hammami S, Boutiba-Ben Boubaker I, Ghozzi R, Saidani M, Amine S, Ben Redjeb S. Nosocomial outbreak of imipenem-resistant Pseudomonas aeruginosa producing VIM-2 metallo-β-lactamase in a kidney transplantation unit. Diagn Pathol 2011;6:106.
Vitkauskiené A, Skrodeniené E, Dambrauskiené A, Baksyté G, Macas A, Sakalauskas R. Characteristics of carbapenem-resistant Pseudomonas aeruginosa strains in patients with ventilator-associated pneumonia in intensive care units. Medicina (Kaunas) 2011;47:652-656.
Kumar SH, De AS, Baveja SM, Gore MA. Prevalence and risk factors of Metallo β-lactamase producing Pseudomonas aeruginosa and Acinetobacter species in burns and surgical wards in a tertiary care hospital. J Lab Physicians 2012;4:39-42.
Sommerfeld RS, Fiegel J. Nutrient dispersion enhances conventional antibiotic activity against Pseudomonas aeruginosa biofilms. Int J Antimicrob Agents 2012;40:177-181.
Lopes SP, Ceri H, Azevedo NF, Pereira MO. Antibiotic resistance of mixed biofilms in cystic fibrosis: impact of emerging microorganisms on treatment of infection. Int J Antimicrob Agents 2012;40:260-263.
Subramanian P, Shanmugam N, Sivaraman U, Kumar S, Selvaraj S. Antiobiotic resistance pattern of biofilm-forming uropathogens isolated from catheterised patients in Pondicherry, India. Australas Med J 2012;5:344-348.
De la Fuente-Nuñéz C, Korolik V, Bains M, Nguyen U, Breidenstein EB, Horsman S, et al. Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob Agents Chemother 2012;56:2696-2704.
Irie Y, Borlee BR, O’Connor JR, Hill PJ, Harwood CS, Wozniak DJ. Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 2012;109:20632-20636.
Burrows LL. Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu Rev Microbiol 2012;66:493-520.
Jain R, Behrens AJ, Kaever V, Kazmierczak BI. Type IV pilus assembly in Pseudomonas aeruginosa over a broad range of cyclic di-GMP concentrations. J Bacteriol 2012;194:4285-4294.
Hall AJ, Fothergill JL, Kaye SB, Neal TJ, McNamara PS, Southern KW, Winstanley C. Intraclonal genetic diversity amongst cystic fibrosis and keratitis isolates of Pseudomonas aeruginosa. J Med Microbiol 2013;62(Pt 2):208-216.
Waters V, Zlosnik JE, Yau YC, Speert DP, Aaron SD, Guttman DS. Comparison of three typing methods for Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis 2012;31:3341-3350.
Yousefi S, Nahaei MR, Farajnia S, Aghazadeh M, Iversen A, Edquist P, et al. A multiresistant clone of Pseudomonas aeruginosa sequence type 773 spreading in a burn unit in Orumieh, Iran. APMIS 2013;121:146-152.
Castillo-Vera J, Ribas-Aparicio RM, Nicolau CJ, Oliver A, Osorio-Carranza L, Aparico-Ozores G. Unusual diversity of acquired β-lactamases in multidrug-resistant Pseudomonas aeruginosa isolates in a Mexican hospital. Microb Drug Resist 2012;18:471-478.