2006, Number 3
<< Back Next >>
Rev Educ Bioquimica 2006; 25 (3)
Vías de señalización que participan en la regulación de la lipólisis en adipotitos
Sánchez SB
Language: Spanish
References: 15
Page: 80-84
PDF size: 94.38 Kb.
ABSTRACT
Lipids are essential macronutrients in human nutrition due to their multiple biological functions. In addition to its fundamental role in cellular structures, lipids are energy storage molecules. Hydrolysis of triacylglycerols stored in adipocytes, a process called lipolysis, contributes to the increase of fatty acid plasma concentration. Fatty acids are oxidative fuel for tissues such as heart, liver, skeletal muscle and kidney. Lipolysis is initiated by hormonal action that triggers signalling cascades. This signalling mechanism activates a hormone sensitive triacylglycerol lipase, which mobilizes neutral fat reserves. Lipolysis is part of a complex scheme of metabolic pathways; therefore it needs to be regulated by specific enzymes, substrates availability, phosphorylation, dephosphorylation or allosteric mechanisms, so it can be integrated in the diverse cellular metabolic activities. In the present review, information of different mediators which can control lipid mobilization in human adipocytes has been compiled and how this process can maintain the body energy homeostasis, in response to physical demand.
REFERENCES
Nelson DL,Cox MM (2000) Lehninger Principios de Bioquímica. Ediciones Omega. Tercera Edición, Barcelona, España, p 1152.
Jenkins-Kruchten AE, Bennaars-Eiden A, Ross JR, Jun- Shen W, Kraemer FB, Bernlohr DA (2003) Fatty Acidbinding protein-Hormone-sensitive Lipase Interaction. Fatty acid dependence on binding. J Biol Chem 278: 47636- 47643.
Stich V, Berlan M (2004) Physiological regulation of NEFA availability: lipolysis pathway. Proc Nutr Soc 63:369-374.
Londos C, Brasaemle DL, Schultz CJ, Adler-Wailes DC, Levin DM, Kimmel AR, Rondinone CM (1999) On the control of lipolysis in adipocytes. Ann N Y Acad Sci 18:155-168.
Tavernier G, Jiménez M, Giacobino JP, Hulo N, Lafontan M, Muzzin P, Langin D (2005) Norepinephrine induces lipolysis in beta1/beta2/beta3-adrenoceptor knockout mice. Mol Pharmacol. 68:793-799.
Yeaman SJ (2004) Hormone-sensitive lipase - new roles for an old enzyme. (Review). Biochem J 379:11-22.
Londos C, Brasaemle DL, Schultz CJ, Segrest JP, Kimmel AR (1999) Perilipins, ADRP, And Other Proteins That Associate With Intracellular Neutral Lipid Droplets In Animal Cell. Semin Cell Dev Biol 10:51-58.
Bernlohr DA, Simpson MA, Vogel Hertzel A, Banaszak LJ (1997) Intracellular lipid-binding proteins and their genes. Annu Rev Nutr 17:277-303.
Sengenès C, Bouloumié A, Hauner H, Berlan M, Busse R, Lafontan M, Galitzky J (2003) Involvement of a cGMPdependent Pathway in the Natriuretic Peptide-mediated Hormone-sensitive Lipase Phosphorylation in Human Adipocytes. J Biol Chem 278:48617-48626.
Sengenès C, Berlan M, De Glisezinski I, Lafontan M, Galitzky J (2005) Les peptides natriurétiques. Une nouvelle voie de régulation de la lipolyse chez l'homme. Médecine Sciences 21: 61-65.
Bold AJ (1985) Atrial Natriuretic Factor: A Hormone Produced by the Heart. Science. 230:767-770.
Zhang J, Hupfeld CJ, Taylor SS, Olefsky JM, Tsien RY (2005) Insulin disrupts β-adrenergic signalling to protein kinase A in adipocytes. Nature 437:569-573.
Gaudiot N, Ribière C, Jaubert AM, Giudicelli Y (2000) Endogenous nitric oxide is implicated in the regulation of lipolysis through antioxidant-related effect. Am J Physiol Cell Physiol 279:1603-1610.
Klatt P, Cacho J, Crespo MD, Herrera E, Ramos P (2000) Nitric Oxide inhibits isoproterenol-stimulated adipocyte lipolysis through oxidative inactivation of the β-agonist. Biochem J. 351:485-493.
Trujillo ME, Sullivan S, Harten I, Schneider SH, Greenberg AS, Fried SK (2004) Interleukin-6 regulates human adipose tissue lipid metabolism and leptin production in vitro. J Clinical Endo Metab 89:5577-5582.