2013, Number 02
<< Back Next >>
MediSan 2013; 17 (02)
Enzymatic determination and heavy metals in the brain and liver in ecotoxicological model Gambusia punctata (Poeciliidae)
Argota PG, González PY
Language: Spanish
References: 20
Page: 221-229
PDF size: 218.90 Kb.
ABSTRACT
A study during 2011 was carried out in order to evaluate the levels of enzymatic activity and heavy metals bioaccumulated in brain and liver of the species
Gambusia punctata, inhabiting San Juan and Filé ecosystems in Santiago de Cuba. For this purpose 3 stations were selected, corresponding to the upper, middle and lower parts of both systems. Specimens biometrically measuring 2.1-3.0 cm in total length were chosen. Acetylcholinesterase enzyme in the brain and glutathione-S-transferase and catalase in the liver were determined, respectively. Copper, zinc, lead and cadmium concentrations were analyzed in both organs, wet processed and quantified by axial view inductively coupled plasma spectroscopy. In San Juan species the enzymatic levels varied between the stations, being higher and statistically different for females (p<0.05), but in that from Filé they were similar between the parts and genders. Regarding metals, concentrations were not detected in brain, neither lead nor cadmium in the liver. Copper and zinc concentrations were higher in the lower part and lower in the upper one, so that there were differences regarding the Filé species. It was concluded that the enzymes varied from an environmentally different station to another and copper and zinc metals, in spite of being essential, pose an ecotoxicological risk in the San Juan species, due to their high bioaccumulative capabilities.
REFERENCES
West DW, Ling N, Hicks BJ, Tremblay LA, Kim ND, Van den Heuvel MR. Cumulative impacts assessment along a large river, using brown bullhead catfish (Ameiurus nebulosos) populations. Environmental Toxicology and Chemistry. 2006; 25(7): 1868-80.
Bozzetti M, Schulz UH. An index of biotic integrity based on fish assemblages for subtropical strems in southern Brazil. Hydrobiologia. 2004; 529(1-3): 133-44.
Orrego R, Moraga CG, González M, Barra R, Valenzuela A, Burgos A, Gavilán JF. Reproductive, physiological, and biochemical responses in juvenile female Rainbow Trout (Oncorhynchus mykiss) exposed to sediment from pulp and paper mill industrial discharge areas. Environ Toxicol Chem. 2005; 24(8):1935-43.
Zhou Q, Zhang J, Fu J, Shi J, Jiang G. Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta. 2008; 606(2); 135-50.
Argota PG, Argota CH. Evaluación ambiental del río San Juan de Santiago de Cuba por exposición bioacumulativa a metales pesados. MEDISAN. 2012 [citado 10 Sep 2012]; 16(8). Disponible en:http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1029-30192012000800003
Ahmad I, Pacheco M, Santos MA. Enzimatic and nonenzimatic antioxidants as an adaptation to phagocyte-induced damage in Anguilla anguilla L. following in situ harbor water exposure. Ecotoxicol Environ Saf. 2004; 57(3): 290-302.
Argota PG, Argota CH, Larramendi GD, Mora TY, Fimia DR, Iannacone OJ. Histología y química umbral de metales pesados en hígado, branquias y cerebro de Gambusia punctata (Poeciliidae) del río Filé de Santiago de Cuba. Rev Electrón Vet. 2012 [citado 10 Sep 2012]; 13(05B). Disponible en:http://www.veterinaria.org/revistas/redvet/n050512B/011ATM08.pdf
Ellman GL, Courtney KD. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961; 7: 88-95.
Keen JH, William BJ. Mechanism for the several activities of the glutathione-S-transferase. J Biol Chem. 1976; 20: 6183-8.
Beutler E. Red Cell Metabolism: A manual of biochemical methods. New York: Grune & Stratton; 1984.
Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (). Protein measurements with folin phenol reagent. J Biol Chem. 1951; 193: 265-75.
Camacho SMI. Bioconcentración y toxicidad de metales en el langostino Macrobrachium rosenbergii (de Man). Rev Toxicol. 2007; 24:14-7.
Vidal CJ. Expression of cholinesterases in brain and non brain tumor. Chem Biol Interact. 2005; 157-158: 227-32.
Meshorer E, Soreq H. Virtues and woes of AChE alternative splicing in stress-related neuropathologies. Trends Neurosci 29 (4): 216-224. guanylate kinases. J Biol Chem. 2006; 278: 6873-8.
Camargo MM, Martínez CB. Environmental toxicology and pharmacology. 2006; 21: 61-9.
Salazar LR, Pérez R, León A, Lemus M, Rojas L. Determinación de tioles totales y tioles solubles en ácido en el pez Colossoma macropomum (cuvier, 1818) expuesto a cadmio. Rev Cient (Maracaibo). 2009; 19(4):414-20.
Odjegba VJ, Fasidi IO. Changes in antioxidant enzyme activities in Eichhornia crassipes (Pontederiaceae) and Pistia stratiotes (Araceae) under heavy metal stress. Rev Biol Trop. 2007; 55(3-4): 815-23.
Robles CA, Pérez R, Vázquez ML, Sánchez JG, Aguirre G. Variabilidad espacio-temporal de metales pesados en camarones, agua y sedimentos de la laguna Madre, Tamaulipas; 2008 [citado 24 Jul 2012]. Disponible en:http://www.turevista.uat.edu.mx/ANO%206%20NUMERO%2023/laguna-res.htm
Armendáriz SN, Aquino TM, Romero OL, Sánchez VM, Sobrino F, Miranda AM. Evaluación de los parámetros bioquímicos en tres macrofitas acuáticas expuestas a cobre. Polibotánica. 2008; 26: 149-58.
Grosell M, McDonald MD, Walsh PJ, Wood CM. Effects of prolonged exposure in the marine gulf toadfish (Opsanus beta) II: copper accumulation, drinking rate and Na+/K+-ATPasa activity in osmoregulatory tissues. Aquat Toxicol. 2004; 68: 263-75.