2013, Number 1
<< Back Next >>
Cir Cir 2013; 81 (1)
Intraventricular yohimbine infusion induces noradrenergic changes in motor cerebral injured rats and enhances motor recovery
González-Piña R, Alfaro-Rodríguez A, Bueno-Nava A, Ávila-Luna A
Language: Spanish
References: 20
Page: 28-32
PDF size: 201.06 Kb.
ABSTRACT
Introduction: It has been proposed that noradrenaline is one of the
neurotransmitters involved in the functional recovery. In this sense,
it has been proposed that the alpha-2 noradrenergic receptors play
an important role in the functional reinstatement.
Objective: the
aim of this work was to study the role of the alpha-2 noradrenergic
receptors on the noradrenaline contents in cerebellum and pons of
rats iron-injured in the motor cortex.
Methods: Fifteen male Wistar rats were allocated in three groups:
control (n = 5) with intracortical infusion of saline (0.9%), injured
(n = 5) with intracortical infusion of dextran iron and intraventricular
infusion of saline, and injured + yohimbine (alpha-2 receptor’s
antagonist; n = 5) that received an intracortical infusion of dextran
iron and also an intraventricular infusion of yohimbine. Motor
behavior was assessed by means of the beam-walking paradigm.
Three days after surgeries, the animals were sacrificed and the
left and right sides of the pons and the cerebellar hemispheres
were extracted. Tissues were prepared for noradrenaline analysis
by means of high performance liquid chromatography.
Results: We observed that the yohimbine-treated animals had a
noradrenaline increase in the right side of the pons and a decrease
in the right cerebellar hemisphere.
Conclusion: It is concluded that the blockage of the alpha-2
receptors leads to an increase of noradrenaline in the locus
coeruleus, which retards the effects of the cerebral injury.
REFERENCES
Goldstein LB. Neuropharmacology of TBI-induced plasticity. Brain Injury 2003;17(8):685-694.
González-Piña R, Bueno-Nava A, Ávila-Luna A. Recuperación funcional motora después del daño cerebral. Un enfoque farmacológico. En: Alfaro-Rodríguez A, González-Piña R y Morales- Martínez JJ. Tópicos de Neurociencias en la Comunicación Humana. 1ª ed. México DF, Manuales de Medicina de la Comunicación Humana, 2005 p. 195-214.
González-Piña R, Bueno-Nava A, Alfaro-Rodríguez A, Durand- Rivera JA. Caracterización de la conducta motora en ratas con ablación cortical. Rev Neurol 2008;47(6):304-309.
Farreras-Valenti P, Rozman C. Medicina interna. 1a. ed. México D.F. Marín, 1976 p. 122.
Brailowsky S, Knight RT, Blood K, Scabini D. Gamma-aminobutiric acid-induced potentiation of cortical hemiplegia. Brain Res 1986;362(2):322-330.
Feeney DM, De Smet AM, Rai S. Noradrenergic modulation of hemiplegia: Facilitation and maintainance of recovery. Rest Neurol Neurosci 2004;22(3-5):175-190.
González-Piña R, Bueno-Nava A, Montes S, Alfaro-Rodríguez A, González-Maciel A, Reynoso-Robles R, et al. Pontine Norepinephrine Content after Motor Cortical Ablation in Rats. Proc West Pharmacol Soc 2005;48:73-76.
Bueno-Nava A, Montes S, De la Garza-Montano P, Alfaro-Rodríguez A, Ortiz A, González-Piña R. Reversal of noradrenergic depletion and lipid peroxidation in the pons after brain injury correlates with motor function recovery in rats. Neurosci Lett 2008;443(1):32-36.
Boyeson MG, Krobert KA. Cerebellar norepinephrine infusions facilitate recovery after sensorimotor cortex injury. Brain Res Bull 1992;29(3-4):435-439.
Kikuchi K, Nishino K, Ohyu H. Increasing CNS norepinephrine levels by the precursor L-DOPS facilitates beam-walking recovery after sensorimotor cortex ablation in rats. Brain Res 2000;860(2):130-135.
Feeney D, Sutton RL. Catecholamines and recovery of function after brain damage. En: Fenney D. Pharmacological approaches to the treatment of brain and spinal cord injury. 1a ed. New York, NY: Plenum Publishing Corporation, 1988 p. 121-142.
Biaggioni I, Robertson RM, Robertson D. Manipulation of norepinephrine metabolism with yohimbine in the treatment of autonomic failure. J Clin Pharmacol 1994;34(5):418-423.
Stjarne, L. Basic mechanisms and local modulation of nerve impulseinduced secretion of neurotransmitters from individual sympathetic nerve varicosities. Rev Physiol Biochem Pharmacol 1989;112(1):1-137.
Cooper JR, Bloom F.E, Roth R.H. The biochemical basis of neuropharmacology. Oxford University Press Seventh Edition, 1996 New York, p. 249.
Goldstein LB. Effects of amphetamines and small related molecules on recovery after stroke in animals and man. Neuropharmacology 2000;39(5):852-859.
González-Piña R, Bueno-Nava A, Escalante-Membrillo C, Montes S, González-Maciel A, Ayala-Guerrero F. Cerebellar and pontine norepinephrine contents alter motor recovery in rats. Rest Neurol Neurosci 2003;21(5-6):219.
Olfert ED, Cross BM, McWilliam AA. Guide for the care and use of experimental animals. 1a ed. Otawa, ON: Can, Council Animal Care, 1993 p. 1-211.
Hall R, Lindholm EP. Organization of Motor and Somatosensory Neocortex in the albino rat. Brain Res 1974;66(1):23-28.
Paxinos G, Watson C. The rat brain in sterotaxic coordinates. 4a ed. Academic Press San Diego, CAL, 1998 p. 128.
González-Piña R, Bueno-Nava A, Montes S, Alfaro-Rodríguez A, González-Maciel A, Reynoso-Robles R, et al. Pontine and cerebellar norepinephrine content in adult rats recovering from focal cortical injury. Neurochem Res 2006;31(12):1443-1449.