2012, Number 3
<< Back Next >>
Rev Cubana Med Trop 2012; 64 (3)
Partial characterization of esterase activity in a temephos-resistant Aedes aegypti strain
Rodríguez MM, Bisset JA, Hernández H, Ricardo Y, French L, Pérez O, Fuentes I
Language: Spanish
References: 29
Page: 256-267
PDF size: 204.88 Kb.
ABSTRACT
Introduction: the esterase enzymes have been defined as the mechanism of resistance to temephos in Aeges aegypti in Cuba, which is the most used larvacide worldwide.
Objective: to partially characterize the activity of esterases in exposed and non-exposed larvae at sublethal doses of temephos in an Aedes aegypti strain that is resistant to this product.
Methods: a susceptible reference Aedes aegypti strain (Rockefeller) and another temephos-resistant strain (SANtemFII) were used. The larvae from SANtemF11 strain were exposed to lethal concentration 90 (LC90) of temephos (1 ppm); 10 % of the surviving larvae after 24 hours (SANtem[24 h] was moved to clean water, with no exposure to insecticide for 24 hours (SANtem [48 h]). The activity of esterases was partially characterized in these larvae through biochemical assays and gel-polyacrylamide electrophoresis. The molecular weight of esterase A 4 (ESt. A4) was estimated with the support of sodium duodecyl sulophate (SDS-PAGE).
Results: the activity of esterases in SANtemF11 was significantly higher than in Rockefeller strain. Significant reduction of the activity of esterases in surviving larvae was observed (SANtemF11 [24 h], but it increased 24 h later without exposure to temephos. The zymogram showed that 10% of larvae that survived from temephos action, just the esterase A4 band increased if compared with those of SAntemF11. The estimated molecular weight of esterase A4 was 58 kDa.
Conclusions: the presence of a specific band of esterase (58 kDa) in surviving larvae confirmed the role of these enzymes in insecticidal resistance. The diagnosis of the function of the esterases in resistance to temephos through biochemical tests should not be made in larvae exposed to sublethal doses of this insecticide, in order to avoid false negatives.
REFERENCES
Regis L, Monteiro AM, Melo-Santos MA, Silveira JC, Furtado AF, Acioli RV, et al. Developing new approaches for detecting and preventing Aedes aegypti population outbreaks: basis for surveillance, alert and control system. Mem Inst Oswaldo Cruz. 2008;103:50-9.
Anderson JR, Rico-Hesse R. Aedes aegypti vectorial capacity is determined by the infecting genotype of dengue virus. Am J Trop Med Hyg. 2006;75:886-92.
Marquetti MC, Suárez S, Bisset JA, Leyva M. Reporte de hábitats utilizados por Aedes aegypti en Ciudad de La Habana, Cuba. Rev Cubana Med Trop. 2005;57(2):159-61.
Rawlins SC. Spatial distribution of insecticide resistance in Caribbean populations of Aedes aegypti and its significance. Rev Panam Salud Pública. 1998;4:243-51.
Wirth MC, Georghiou GP. Selection and characterization of temephos resistance in a population of Aedes aegypti from Tortola, British Virgin Islands. J Am Mosq Control Assoc.1999;15:315-20.
Lima JB, Da-Cunha MO, Da Silva RC, Galardo AK, Soares Sda, Braga IA, et al. Resistance of Aedes aegypti to organophosphates in several municipalities in the state of Río de Janeiro and Espíritu Santo, Brazil. Am J Trop Med Hyg. 2003;68:329-33.
Rodríguez MM, Bisset JA, Fernández D. Levels of insecticide resistance and resistance mechanisms in Aedes aegypti (Diptera: Culicidae) from some Latin-American countries. J Am Mosq Control Assoc. 2007;24(3):420-9.
Bisset JA, Rodríguez MM, Ricardo Y, Ranson H, Pérez O. Temephos resistance and esterase activity in Aedes aegypti (Diptera: Culicidae) from Havana city increased dramatically between 2006 and 2008. Med Vet Entomol. 2011;25:233-9.
Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Ann Review Entomol. 2000;45:371-91.
Flores AE, Grajales JS, Salas IF, Garcia GP, Becerra MHL, Lozano S, et al. Mechanisms of insecticide resistance in field populations of Aedes aegypti (L.) from Quintana Roo, Southern Mexico. J Am Mosq Control Assoc. 2006;22:672-77.
Braga IA, Valle D. Aedes aegypti: history of control in Brazil. Epidemiol Serv Saúde. 2007;16:113-8.
Jirakanjanakit N, Rongnoparut P, Saengtharatip S, Chareonviriyaphap T, Duchon S, Bellec C, et al. Insecticide susceptible/resistance status in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Thailand during 2003-2005. J Econ Entomol. 2007;100:545-50.
Tikar SN, Kumar A, Prasad GB, Prakash S. Temephos-induced resistance in Aedes aegypti and its cross-resistance studies to certain insecticides from India. Parasitol Res. 2009;105:57-63.
Chen CD, Nazni WA, Lee HL, Sofian-Azirun M. Weekly variation on susceptibility status of Aedes mosquitoes against temephos in Selangor, Malaysia. Trop Biomed. 2005;22(2):195-206.
Melo-Santos MAV, Varjal-Melo JJM, Araújo AP, Gomesa TCS, Paivaa MHS, Regis LN, et al. Resistance to the organophosphate temephos: Mechanisms, evolution and reversion in an Aedes aegypti laboratory strain from Brazil. Acta Trop. 2010;113:180-9.
Marcombe S, Poupardin R, Darriet F, Reynaud S, Bonnet J, Strode C, et al. Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies). BMC Genomics. 2009;10:494.
Rodríguez MM, Bisset JA, Milá L, Lauzán L, Soca A. Niveles de resistencia a insecticidas y sus mecanismos en una cepa de Aedes aegypti de Santiago de Cuba. Rev Cubana Med Trop. 1999;51(2):83-8.
Rodríguez MM, Bisset JA, Fernández D. Levels of insecticide resistance and resistance mechanisms in Aedes aegypti (Diptera: Culicidae) from some Latin-American countries. J Am Mosq Control Assoc. 2007;24 (3):420-9.
Bisset JA, Rodríguez MM, Fernández D, Palomino M. Resistencia a insecticidas y mecanismos de resistencia en Aedes aegypti (Diptera: Culicidae) de 2 provincias del Perú. Rev Cubana Med Trop. 2007;59(3):202-8.
Bisset JA, Rodríguez MM, San Martín JL, Romero JE, Montoya R. Evaluación de la resistencia a insecticidas de una cepa de Aedes aegypti de El Salvador. Rev Panam Salud Pub. 2009;61(3):229-34.
Pérez O, Bisset JA, Leyva M, Rodríguez J, Fuentes O, García I, et al. Manual de Indicaciones Técnicas para Insectarios; 2004. p. 16-53.
Rodríguez MM, Bisset JA, Milá L, Molina D, Lauzan L. Detection of resistance mechanisms in Aedes aegypti from Cuba and Venezuela. J Med Entomol. 2001;38(5):623-8.
Laemmli UK. Cleavaje of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680-5.
Rodríguez MM, Bisset JA, Ruiz M, Soca A. Cross-resistance to pyrethroid and organophosphorus insecticides induced by selection with temephos in Aedes aegypti (Diptera: Culicidae) from Cuba. J Med Entomol. 2002;39(6):882-8.
Muhammad AR, Poupardina R, Reynauda S, Strode C, Ranson H, Jean-Philippe D. Impact of glyphosate and benzopyrene on the tolerance of mosquito larvae to chemical insecticides. Role of detoxification genes in response to xenobiotics. Aquatic Toxicol. 2009;93:61-9.
Feyereisen R. Insect citochrome P450. In: Gilbert LI, Iatrou K, Gill S, editors. Comprehensive Molecular Insect Science. Oxford: Elsevier; 2005. p.1-77.
Rodríguez MM, Bisset JA, Fernández D, Pérez O. Resistencia a insecticidas en larvas y adultos de Aedes aegypti: prevalencia de la esterasa A4 asociada con la resistencia a temefos. Rev Cubana Med Trop. 2004;56(1):54-60.
Bisset JA, Rodríguez MM, Fernández D, Pérez O. Estado de la resistencia a insecticidas y mecanismos de resistencia en larvas del Municipio Playa, colectadas durante la etapa intensiva contra Aedes aegypti en Ciudad de la Habana, 2001-2002. Rev Cubana Med Trop. 2004;56(1):61-6.
Strode C, Wondji CS, David JP, Hawkes NJ, Lumjuan N, Nelson DR, et al. Genomic analysis of detoxification genes in the mosquito Aedes aegypti. Insect Biochem Mol Biol. 2008;38:113-23.