2012, Number 3
<< Back Next >>
Patol Rev Latinoam 2012; 50 (3)
Disorders of cerebellar growth and development in preterm neonates. A neuropathological study
Jones M, Mijalovsky A, Valencia M
Language: Spanish
References: 88
Page: 190-205
PDF size: 543.32 Kb.
ABSTRACT
In order to evaluate postnatal development of cerebellum, we analyzed 92 cerebella from preterm and term neonates up to 7 days postnatal
age (control cases) and preterm neonates with postconceptional age at term equivalent. Reduction of the cerebellar weight, diminished
foliar height and foliation, diminished molecular layer thickness, diminished internal granular layer cell density, and high number of Purkinje
cells per segment were observed. These results correlated with each other and with brain and body weight, but not with gestational age.
Necrosis, apoptosis in the immature cortex, reactive astrocytosis and microgliosis in the white matter correlated with hypoxia-ischemia,
infections, undernutrition and therapies.
The cases examined showed cerebellar lesions plus underdeveloped cerebellar structures with patterns similar to those of 30-35 weeks
gestational age, although these preterm neonates had completed a postconceptional age equivalent to term. We interpreted the findings
as the effect of noxa acting during the cerebellar lobes’ vulnerability window. Direct injury of developing cerebellar cortex and white matter
is an important though poorly recognized cause of impaired cerebellar growth.
REFERENCES
Volpe JJ. Neurology of the Newborn. 4th ed. Philadelphia: WB Saunders, 2008:299-300.
Greisen G. Effect of cerebral bloodflow and cerebrovascular autoregulation on the distribution, type and extent of cerebral injury. Brain Pathol 1992;2:223-228.
Rorke LB. Anatomical features of the developing brain implicated in pathogenesis of hypoxic-ischemic injury. Brain Pathol 1992;2:211-221.
Rorke LB. Pathology of perinatal brain injury. New York: Raven Press, 1982:93-105.
Yu MC, Yu WH. Effect of hypoxia on cerebellar development: morphologic and radioautographic studies. Exp Neurol 1980;70:652-664.
Friede RL. Developmental Neuropathology. Wien: Springer- Verlag, 1975:30.
Takashima S. Olivocerebellar lesions in infants born prematurely. Brain Dev 1982; 4:361-366.
Mercuri E, He J, Curati WL, Dubowitz LM, et al. Cerebellar infarction and atrophy in infants and children with a history of premature birth. Pediatr Radiol 1997;27:139-143.
Grunnet ML. Periventricular leukomalacia complex. Arch Pathol Lab Med 1979; 103:6-10.
Armstrong DL, Sauls CD, Goddard-Finegold J. Neuropathologic findings in short-term survivors of intraventricular hemorrhage. Am J Child 1987;141:617-621.
Skullerud K, Westre B. Frequency and prognostic significance of germinal matrix hemorrhage, periventricular leukomalacia and pontosubicular necrosis in preterm infants. Acta Neuropathol 1986;70:257-261.
Limperopoulos C, Soul JS, Gauvreau K, Huppi PS, et al. Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics 2005;115:688-695.
Limperopoulos C, Soul JS, Haidar H, Huppi PS, et al. Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics 2005;116; 844-850.
Messerschmidt A, Fuiko R, Prayer D, Brugger PC, et al. Disrupted cerebellar development in preterm infants is associated with impaired neurodevelopmental outcome. Eur J Pediatr 2008;167:1141-1147.
Messerschmidt A, Prayer D, Brugger PC, Boltshauser E, et al. Preterm birth and disruptive cerebellar development: assessment of perinatal risk factors. Eur J Paediatr Neurol 2008;12:455-460.
Argyropoulou MI, Xydis V, Drougia A, Argyropoulou PI, et al. MRI measurements of the pons and cerebellum in children born preterm; associations with the severity of periventricular leukomalacia and perinatal risk factors. Neuroradiology 2003;45:730-734.
Bodensteiner JB, Johnsen SD. Cerebellar injury in the extremely premature infant: newly recognized but relatively common outcome. J Child Neurol 2005;20:139-142.
Johnsen SD, Bodensteiner JB, Lotze TE. Frequency and nature of cerebellar injury in the extremely premature survivor with cerebral palsy. J Child Neurol 2005;20:60-64.
Messerschmidt A, Brugger PC, Boltshauser E, Zoder G, et al. Disruption of cerebellar development: potential complication of extreme prematurity. AJNR 2005;26:1659-1667.
Srinivasan L, Allsop J, Counsell SJ, Boardman JP, et al. Smaller cerebellar volumes in very preterm infants at termequivalent age are associated with the presence of supratentorial lesions. AJNR 2006;27:573-579.
Krägeloh-Mann I, Toft P, Lunding J, Andersen J, et al. Brain lesions in preterms: origin, consequences and compensation. Acta Paediatr 1999;88:897-908.
Allin MP, Salaria S, Nosarti C, Wyatt J, et al. Vermis and lateral lobes of the cerebellum in adolescents born very preterm. Neuroreport 2005;16:1821-1824.
Peterson BS, Vohr B, Staib LH, Cannistraci CJ, et al. Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA 2000;284:1939-1947.
Rollins NK, Wen TS, Domínguez R. Crossed cerebellar atrophy in children: a neurologic sequela of extreme prematurity. Pediatr Radiol 1995;25:S20-S25.
Allin M, Matsumoto H, Santhouse AM, Nosarti C, et al. Cognitive and motor function and the size of the cerebellum in adolescents born very preterm. Brain 2001;124:60-66.
Nosarti C, Al-Asady MH, Frangou S, Stewart AL, et al. Adolescents who were born very preterm have decreased brain volumes. Brain 2002;125:1616-1623.
Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain 1998;121:561-579.
Berquin PC, Giedd JN, Jacobsen LK, Hamburger SD, et al. Cerebellum in attention-deficit hyperactivity disorder: a morphometric MRI study. Neurology 1998;50:1087-1093.
Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children; cerebellar cognitive affective syndrome in a paediatric population. Brain 2000;123:1041-1050.
Norman MG, Mc Gillivray BC, Kalousek DK, Hill A, Poskitt KJ. Congenital Malformations of the Brain. New York: Oxford University Press, 1995:343.
Pierson CR, Folkerth RD, Billiards SS, Trachtenberg FL, et al. Gray matter injury associated with periventricular leukomalacia in the premature infant. Acta Neuropathol 2007;114:619-631.
Jones M. Postnatal cerebellar development in preterms with postconceptional age at term equivalent. A neuropathological study. Ludovica Pediatrica 2008;10:121-140.
Robinson S. Systemic prenatal insults disrupt telencephalon development: Implications for potential interventions. Epilepsy & Behaviour 2005;7:345-363.
Jones M. El cerebelo normal del recién nacido. Estudio morfométrico macro y microscópico. Patología (Mexico) 2006;44:192-202.
Jones M. Metodología para el estudio anátomo-patológico del cerebelo en el recién nacido (0 a 30 días). Patología (México) 2006;44:155-160.
Pinar H, Burke SH, Huang CW, Singer DB, Sung CJ. Reference values for transverse cerebellar diameter throughout gestation. Ped Dev Pathol 2002;5:489-494.
Valdés-Dapena M, Kalousek DK, Huff DS. Perinatal, fetal and embryonic autopsy. In: Gilbert-Barness E. Potter’s Pathology of the Fetus and Infant. St. Louis: Mosby, 1997:483.
Kissane JM. Pathology of infancy and childhood. St.Louis: Mosby, 1975:1-5.
Singer DB, Sung CJ, Wigglesworth JS. Fetal growth and maturation with standards for body and organ development. In: Wigglesworth JS, Singer DB. Textbook of fetal and perinatal pathology. Boston: Blackwell Scientific Publications, 1991:11.
Shepard TH, Shi M, Fellingham GW, Fujinaga M, et al. Organ weight standards for human fetuses. Ped Pathol 1988;8:513-524.
Larroche JC, Encha Razavi F, de Vries L. Central Nervous System. In: Gilbert-Barness E. Potter’s Pathology of the Fetus and Infant. St Louis: Mosby, 1997:1041.
Roessman U. Weight ratio between the infratentorial and supratentorial portions of the central nervous system. J Neuropathol Exp Neurol 1974;33:164-170.
Guihard-Costa AM, Larroche JC. Differential growth between the fetal brain and its infratentorial part. Early Hum Dev 1990;23:27-40.
Shankle WR, Landing BH, Gregg J. Normal organ weights of infants and children: Graphs of values by age, with confidence intervals. Ped Pathol 1983;1:399-408.
Lemire RJ, Loeser JD, Leech RW, Alvord EC. Normal and Abnormal Development of the Human Nervous System. Maryland: Harper & Row, 1975:144-154.
Jacobson M. Developmental Neurobiology, 2nd ed. New York: Plenum Press, 1978:96.
Larroche, J-C. Developmental pathology of the Neonate. Amsterdam: Elsevier, 1977:346-350.
Rakic P, Sidman RL. Histogenesis of cortical layers in human cerebellum, particularly the lamina dissecans. J Comp Neur 1970;139:473-500.
Friede RL. Dating the development of human cerebellum. Acta Neuropath 1973;23:48-58.
Siebert JR, Kapur RP. Rulers rule: present and future applications of cerebellar morphometry. Ped Develop Pathol 2002;5:422-424.
Valdés-Dapena MA. Histology of the fetus and newborn. Philadelphia: WB Saunders Co, 1979;576-579.
Rothstein RP, Levison SW. Damage to the choroid plexus, ependyma and subependyma as a consequence of perinatal hypoxia-ischemia. Dev Neurosci 2002;24:426-436.
Edwards D: New approaches to brain injury in preterm infants. Dev Neurosci 2002;24:352-354.
Grunnet ML, Shields WD. Cerebellar hemorrhage in the premature infant. J Pediatr 1976; 88(sup l):605-608.
Ábrahám H, Tornoczky T, Kosztolanyi G, Seress L. Cell proliferation correlates with the postconceptual and not with the postnatal age in the hippocampal dentate gyrus, temporal neocortex and cerebellar cortex in preterm infants. Early Hum Dev 2004;78:29-43.
Ábrahám H, Tornoczky T, Kosztolanyi G, Seress L. Cell formation in the cortical layers of the developing human cerebellum. Int J Dev Neurosci 2001;19:53-62.
Johnsen SD, Tarby TJ, Lewis KS, Bird R, Prenger E. Cerebellar infarction: an unrecognized complication of very low birthweight. J Child Neurol 2002;17:320-324.
Rees S, Harding R, Walker D. An adverse intrauterine environment: implications for injury and altered development of the brain. Int J Dev Neurosci 2008;26:3-11.
Smart JL, Dobbing J, Adlard BPF, Lynch A, Sands J. Vulnerability of developing brain: relative effects of growth restriction during the fetal and sucking periods on behaviour and brain composition of adults rats. J Nutr 1973;103:1327-1338.
Volpe JJ. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol 2009;24:1085-1104.
Ramenghi LA, Fumagalli M, Bassi L, Groppo M, et al. Brain maturation of preterm newborn babies: new insights. J Pediatr Gastroenterol Nutr 2007;45(Suppl 3):S143-146.
Golden JA, Gilles FH, Rudelli R, Leviton A. Frequency of neuropathological abnormalities in very low birth weight infants. J Neuropathol & Exp Neurol 1997;56:472-478.
Shah DK, Anderson PJ, Carlin JB, Pavlovic M, et al. Reduction in cerebellar volumes in preterm infants: relationship to white matter injury and neurodevelopment at two years of age. Pediatr Res 2006;60:97-102.
Larroche J-C. Nécrose cérébrale massive chez le nouveau-né. Ses rapports avec la maturation. Son expression clinique et bioélectrique. Biol Neonate 1968;13:340-360.
Squier W. Pathology of fetal and neonatal brain damage: identifying the timing. In: Squier W. Acquired damage to the developing brain. Timing and causation. London: Arnold, 2002; 101-127.
Squier W. Grey matter lesions. In: Golden JA, Harding BN. Developmental Neuropathology. Basel: ISN Neuropath Press, 2004:173.
Martin LJ. Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: A perspective on the contributions of apoptosis and necrosis. Brain Res Bull 1998;46:281-309.
Portera-Cailliau C: Excitotoxic neuronal death in the immature brain is an apoptosis-necrosis morphological continuum. J Comp Neurol 1997;378:70-87.
Grandgirard D, Bifrare YD, Pleasure SJ, Kummer J, et al. Pneumococcal meningitis induces apoptosis in recently postmitotic immature neurons in the dentate gyrus of neonatal rats. Dev Neurosci 2007;29:134-142.
Wang X, Hagberg H, Nie Ch, Zhu Ch, et al. Dual role of intrauterine immune challenge on neonatal and adult brain vulnerability to hypoxia-ischemia. J Neuropathol Exp Neurol 2007;66:552-561.
Larouche A, Roy M, Kadhim H, Tsanaclis AM, et al. Neuronal injuries induced by perinatal hypoxic-ischemic insults are potentiated by prenatal exposure to lipopolysaccharide: animal model for perinatally acquired encephalopathy. Dev Neurosci 2005;27:134-142.
Hutton L, Castillo-Melendez M, Walker D. Uteroplacental inflammation results in blood brain barrier breakdown, increased activated caspase 3 and lipid peroxidation in the late gestation ovine fetal cerebellum. Dev Neurosci 2007;29:341-354.
Taglialatela G, Perez-Polo JR, Rassin DK. Induction of apoptosis in the CNS during development by the combination of hyperoxia and inhibition of glutathione synthesis. Free Radic Biol Med 1998;25:936-942.
Rees S. Fetal and neonatal origins of altered brain development. Early Hum Dev 2005;81:753-761.
Shoma O, Mito T, Mizuguchi M, Takashima S. The prenatal age critical for the development of the pontosubicular necrosis. Acta Neuropathol 1995;90:7-10.
Johnston MV. Selective vulnerability in the neonatal brain. Ann Neurol 1998;44:155-156.
Ohyu J, Takashima S. Decreased expression of microtubuleassociated protein 5 (MAP5) in the molecular layer of cerebellum in preterm infants with olivocerebellar lesions. Brain Dev 1998;20:22-26.
Leviton A, Gilles F. Ventriculomegaly, delayed myelination, white matter hypoplasia, and ‘periventricular’ leukomalacia: how are they related? Pediatr Neurol 1996;15:127-136.
Dammann O. Inflammatory brain damage in the preterm newborn: etiologic and pathogenetic aspects. Biol Neonate 2005;88:259-260.
Tsuru A, Mizuguchi M, Takashima S. Cystic leukomalacia in the cerebellar folia of premature infants. Acta Neuropathol 1995;90:400-402.
Biran V, Heine VM, Verney C, Sheldon RA, et al. Cerebellar abnormalities following hypoxia alone compared to hypoxicischemic forebrain injury in the developing rat brain. Neurobiol Dis 2011;41:138-146.
Dean JM, Farrag D, Zahkouk SA, El Zawahry, et al. Cerebellar white matter injury following systemic endotoxemia in preterm fetal sheep. Neuroscience 2009;160:606-615.
Gavilanes AW, Strackx E, Kramer BW, Gantert M, et al. Chorioamnionitis induced by intraamniotic lipopolysaccharide resulted in an interval-dependent increase in central nervous system injury in the fetal sheep. Am J Obstet Gynecol 2009;200:437.e1-8.
Cherian S, Whitelaw A, Thoresen M, Love S. The pathogenesis of neonatal post-hemorrhagic hydrocephalus. Brain Pathol 2004;14:305-311.
Fukumizu M, Takashima S, Becker LE. Neonatal post-hemorrhagic hydrocephalus: neuropathologic and immunohistochemical studies. Pediatr Neurol 1995;13:230-234.
Taylor DL, Joashi UC, Sarraf C, Edwards AD, Mehmet H. Consequential apoptosis in the cerebellum following injury to the developing rat forebrain. Brain Pathol 2006;16:195- 201.
Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 2009;8:110-124.
Kinney HC. The encephalopathy of prematurity: One pediatric neuropathologist’s perspective. Semin Pediatr Neurol 2009;16:179-190.