2012, Number 5
<< Back Next >>
Gac Med Mex 2012; 148 (5)
Regulation by histamine H3 receptors of neurotransmitter release in the basal ganglia: implications for Parkinson’s disease pathophysiology
Aquino-Miranda G, Molina-Hernández A, Arias-Montaño José-Antonio
Language: Spanish
References: 62
Page: 467-475
PDF size: 110.46 Kb.
ABSTRACT
Parkinson’s disease is a progressive neurodegenerative movement disorder that results primarily from the death of dopaminergic neurons in the
substantia nigra pars compacta. However, other neurotransmitter systems (noradrenergic, cholinergic and serotoninergic) are also involved in the disease. On the other hand, there is increasing evidence for a role of histamine as a neuromodulator in the mammalian central nervous system. Histamine-releasing neurons are exclusively located in the tuberomammilary nucleus of the hypothalamus, project to all major areas of the brain and participate in functions such as the regulation of sleep/wakefulness, locomotor activity, autonomic and vestibular functions, feeding and drinking, analgesia, learning and memory. In this work we review the pathophysiological characteristics of Parkinson’s disease and the emerging information about alterations in histaminergic transmission reported for parkinsonian patients and animal models of the disease. In particular, we focus on the role of histamine H
3 receptors, expressed at high density in the basal ganglia, in the normal function of these nuclei and their possible participation in the pathophysiology of Parkinson’s disease.
REFERENCES
Moore DJ, West AB, Dawson VL, Dawson TM. Molecular pathophysiology of Parkinson’s disease. Ann Rev Neurosci. 2005;28:57-87.
Schapira AH, Bezard E, Brotchie J, et al. Novel pharmacological targets for the treatment of Parkinson’s disease. Nature Reviews Drug Discov. 2006;5:845-54.
Schapira AH. Neurobiology and treatment of Parkinson’s disease. Trends Pharmacol Sci. 2009;30:41-7.
Schapira AH, Jenner P. Etiology and pathogenesis of Parkinson’s disease. Mov Disord. 2011;26:1049-55.
Ross CA, Poirier MA. Protein aggregation and neurodegenerative disease. Nature Medicine. 2004;Suppl:10-7.
Imai Y, Takahashi R. How do Parkin mutations result in neurodegeneration? Curr Opin Neurobiol. 2004;14:384-9.
Martin I, Dawson VL, Dawson TM. Recent advances in the genetics of Parkinson’s disease. Annu Rev Genomics Hum Genet. 2011;12: 301-25.
Bolam JP, Hanley JJ, Booth PAC, Bevan MD. Synaptic organisation of the basal ganglia. J Anat (Lond). 2000;196:527-42.
Wichmann T, Dostrovsky JO. Pathological basal ganglia activity in movement disorders. Neuroscience. 2011;198:232-44.
Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990;13:266-71.
Alexander SPH, Mathie A, Peters JA. Guide to receptors and channels. 5th ed. Br J Pharmacol 2011;164 Suppl 1:44. www.brjpharmacol.org/ view/0/GRAC.html.
Bertrán-González J, Hervé D, Girault JA, Valjent E. What is the degree of segregation between striatonigral and striatopallidal projections? Front Neuroanat. 2010;4(pii):136.
Bertrán-González J, Bosch C, Maroteaux M, et al. Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J Neurosci. 2008;28:5671-85.
Humpries MD, Stewart RD, Gurney KN. A physiologically plausible model of action, selection and oscillatory activity in the basal ganglia. J Neurosci. 2006;26:12921-42.
Surmeier DJ, Bargas J, Hemmings HC, Nairn AC, Greegard P. Modulation of Ca2+ currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron. 1995;14:385-97.
Surmeier DJ, Song WJ, Yan Z. Coordinated expression of dopamine receptors in neostriatal spiny neurons. J Neurosci. 1996;16:6579-91.
Surmeier DJ, Ding J, Day M, Wang Z, Shen W. D1 and D2 dopaminereceptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Pharmacol Sci. 2007;30:228-35.
Surmeier DJ, Carrillo-Reid L, Bargas J. Dopaminergic modulation of striatal neurons, circuits, and assemblies. Neuroscience. 2011;198: 3-18.
Hernández-López S, Bargas J, Surmeier DJ, Reyes A, Galarraga E. D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance. J Neurosci. 1997;17:3334-42.
Vilchis C, Bargas J, Ayala GX, Galván E, Galarraga E. Ca2+ channels that activate Ca2+-dependent K+ currents in neostriatal neurons. Neuroscience. 2000;95:745-52.
Hernández-López S, Tkatch T, Pérez-Garci E, et al. D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLCß1-IP3-calcineurin-signaling cascade. J Neurosci. 2000;20:8987-95.
Gerfen CR, Surmeier DJ. Modulation of striatal projection systems by dopamine. Annu Rev Neurosci. 2011;34:441-66.
Obeso JA, Rodríguez-Oroz MC, Rodríguez M, Arbizu JM, Giménez- Amaya JM. The basal ganglia and disorders of movement: pathophysiological mechanisms. News Physiol Sci. 2002;17:51-5.
Rivlin-Etzion M, Marmor O, Hheimer G, Raz A, Nini A, Bergman H. Basal ganglia oscillations and pathophysiology of movement disorders. Curr Opin Neurobiol. 2006;16:629-37.
Israel Z, Bergman H. Pathophysiology of the basal ganglia and movement disorders: from animal models to human clinical applications. Neurosci Biobehav Rev. 2008;32:367-77.
Haas HL, Panula P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nature Rev Neurosci. 2003;4:121-30.
Haas HL, Sergeeva OA, Selbach O. Histamine in the nervous system. Physiol Rev. 2008;88:1183-241.
Wada H, Inagaki N, Yamatodani A, Watanabe T. Is the histaminergic neuron system a regulatory center for whole-brain activity? Trends Neurosci. 1991;14:415-8.
Martínez-Mir MI, Pollard H, Moreau J, et al. Three histamine receptors (H1, H2 and H3) visualized in the brain of human and non-human primates. Brain Res. 1990;526:322-7.
Pillot C, Heron A, Cochois V, et al. A detailed mapping of the histamine H3 receptor and its gene transcripts in rat brain. Neuroscience. 2002;114:173-93.
Leurs R, Bakker RA, Timmeman H, De Esch JP. The histamine H3 receptor: from gene cloning to H3 receptor drugs. Nature Rev Drug Discov. 2005;4:107-20.
Bongers G, Bakker RA, Leurs R. Molecular aspects of the histamine H3 receptor. Biochem Pharmacol. 2007;73:1195-204.
Bongers G, Sallmen T, Passani MB, et al. The Akt/GSK-3ß axis as a new signaling pathway of the histamine H3 receptor. J Neurochem. 2007;103:248-58.
Sahlholm K, Nilsson J, Marcellino D, Fuxe K, Arhem P. The human histamine H3 receptor couples to GIRK channels in Xenopus oocytes. Eur J Pharmacol. 2007;567:206-10.
Schlicker E, Fink K, Detzner M, Gothert M. Histamine inhibits dopamine release in the mouse striatum via presynaptic H3 receptors. J Neural Transm Gen Sect. 1993;93:1-10.
Molina-Hernández A, Núñez A, Arias-Montaño JA. Histamine H3-receptor activation inhibits dopamine synthesis in rat striatum. NeuroReport. 2000;17:163-6.
Doreulee N, Yanovsky Y, Flagmeyer I, Stevens DR, Haas HL, Brown RE. Histamine H3 receptors depress synaptic transmission in the corticostriatal pathway. Neuropharmacology. 2001;40:106-13.
Molina-Hernández A, Sierra JJ, Arias-Montaño JA. Histamine H3 receptor activation inhibits glutamate release from rat striatal synaptosomes. Neuropharmacology. 2001;41:928-34.
Arias-Montaño JA, Florán B, García M, Aceves J, Young JM. Histamine H3 receptor-mediated inhibition of depolarisation-induced, dopamine D1 receptor- dependent release of [3H]-g-aminobutyric acid in rat striatum. Br J Pharmacol. 2001;133:165-71.
Arias-Montaño JA, Florán B, Florán L, Aceves J, Young JM. Dopamine D1 receptor facilitation of depolarisation-induced release of -aminobutyric acid (GABA) in rat striatum is mediated by the cAMP/PKA pathway and involves P/Q-type calcium channels. Synapse. 2007; 61:310-9.
Ellender TJ, Huerta-Ocampo I, Deisseroth K, Capogna M, Bolam JP. Differential modulation of excitatory and inhibitory striatal synaptic transmission by histamine. J Neurosci. 2011;31:15340-51.
Sánchez-Lemus LE, Arias-Montaño JA. Histamine H3 receptor-mediated inhibition of dopamine D1 receptor-induced cAMP formation in rat striatum. Neurosci Lett. 2004;364:179-84.
Pillot C, Ortiz J, Heron A, Ridray S, Schwartz JC, Arrang JM. Ciproxifan, a histamine H3-receptor antagonist/inverse agonist, potentiates neurochemical and behavioral effects of haloperidol in the rat. J Neurosci. 2002;22:7272-80.
Ferrada C, Ferré S, Casadó V, et al. Interactions between histamine H3 and dopamine D2 receptors and the implications for striatal function. Neuropharmacology. 2008;55:190-7.
Ferrada C, Moreno E, Casadó V, et al. Marked changes in signal transduction upon heteromerization of dopamine D1 and histamine H3 receptors. Br J Pharmacol. 2009;157:64-75.
Osorio-Espinoza A, Alatorre A, Ramos-Jiménez J, et al. Pre-synaptic histamine H3 receptors modulate glutamatergic transmission in rat globus pallidus. Neuroscience. 2011;176:20-31.
Jaeger D, Kita H. Functional connectivity and integrative properties of globus pallidus neurons. Neuroscience. 2011;198:44-53.
García M, Florán B, Florán L, Arias-Montaño JA, Young JM, Aceves J. Histamine H3 receptor activation selectively inhibits dopamine D1 receptordependent [3H]-GABA release from depolarisation-stimulated slices of rat substantia nigra pars reticulata. Neuroscience. 1997;80:241-9.
Threlfell S, Cragg SJ, Kallo I, Turi GF, Coen CW, Greenfield SA. Histamine H3 receptors inhibit serotonin release in substantia nigra pars reticulata. J Neurosci. 2004;24:8704-10.
Zhou FW, Xu JJ, Zhao Y, LeDoux MS, Zhou FM. Opposite functions of histamine H1 and H2 receptors and H3 receptor in substantia nigra pars reticulata. J Neurophysiol. 2006;96:1581-91.
Garduño-Torres B, Treviño M, Gutiérrez R, Arias-Montaño JA. Histamine H3 receptor activation inhibits glutamate, but not GABA release from rat thalamus synaptosomes. Neuropharmacology. 2007;52:527-35.
Ryu JH, Yanai K, Watanabe T. Marked increase in histamine H3 receptors in the striatum and substantia nigra after 6-hydroxydopamine-induced denervation of dopaminergic neurons: an autoradiographic study. Neurosci Lett. 1994;178:19-22.
Anichtchik OV, Huotari M, Peitsaro N, Haycock JW, Mannisto PT, Panula P. Modulation of histamine H3 receptors in the brain of 6-hydroxydopamine- lesioned rats. Eur J Neurosci. 2000;12:3823-32.
Ryu JH, Yanai K, Zhao XL, Watanabe T. The effect of dopamine D1 receptor stimulation on the up-regulation of histamine H3-receptors following destruction of the ascending dopaminergic neurones. Br J Pharmacol. 1996;118:585-92.
Anichtchik OV, Rinne JO, Kalimo H, Panula P. An altered histaminergic innervation of the substantia nigra in Parkinson’s disease. Exp Neurol. 2000;163:20-30.
Rinne JO, Anichtchik OV, Eriksson KS, et al. Increased brain histamine levels in Parkinson’s disease but not in multiple system atrophy. J Neurochem. 2002;81:954-60.
Anichtchik OV, Peitsaro N, Rinne JO, Kalimo H, Panula P. Distribution and modulation of histamine H3 receptors in basal ganglia and frontal cortex of healthy controls and patients with Parkinson’s disease. Neurobiol Dis. 2001;8:707-16.
Corvol JC, Muriel MP, Valjent E, et al. Persistent increase in olfactory type G-protein subunit levels may underlie D1 receptor functional hypersensitivity in Parkinson’s disease. J Neurosci. 2004;24:7007-14.
García-Ramírez M, Aceves J, Arias-Montaño JA. Intranigral injection of the H3 agonist immepip and systemic apomorphine elicit ipsilateral turning behaviour in naive rats, but reduce contralateral turning in hemiparkinsonian rats. Behav Brain Res. 2004;154:409-15.
Liu CQ, Hu DN, Liu FX, Chen Z, Luo JH. Apomorphine-induced turning behavior in 6-hydroxydopamine lesioned rats is increased by histidine and decreased by histidine decarboxylase, histamine H1 and H2 receptor antagonists, and an H3 receptor agonist. Pharmacol Biochem Behav. 2008;90:325-30.
Santini E, Valjent E, Usiello A, et al. Critical involvement of cAMP/ DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA induced dyskinesia. J Neurosci. 2007;27:6995-7005.
Gómez-Ramírez J, Johnston TH, Visanji NP, Fox SH, Brotchie JM. Histamine H3 receptor agonists reduce L-DOPA-induced chorea, but not dystonia, in the MPTP-lesioned nonhuman primate model of Parkinson’s disease. Mov Disord. 2006;21:839-46.