2007, Number 4
<< Back Next >>
Rev Educ Bioquimica 2007; 26 (4)
'¡Silencio mensajeros! Qué son y cómo actúan los microRNAs'
Flores F, Martínez MÁ, Arenas C, Covarrubias A, Reyes JL
Language: Spanish
References: 16
Page: 135-141
PDF size: 170.68 Kb.
ABSTRACT
MicroRNAs are short RNA molecules that base-pair to complementary regions in target messenger RNAs. Binding of microRNAs results in the inhibiton of target mRNA expression, termed RNA silencing. Here, we will review recent progress in the identification, biogenesis genomic arrangement and mechanisms of action of plant and animal microRNAs. In addition, we will present other small RNAs found in both plants and animals that have also been proposed as regulators of gene expression as well. Finally, we highlight what we consider to be current questions in the field, as important challenges for future researchers.
REFERENCES
Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75(5): 843-854.
Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science. 294(5543): 853-858.
Lee R, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science. 294(5543): 862-864.
Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 294(5543): 858-862.
Griffiths-Jones S (2006) miRBase: the microRNA sequence database. Methods Mol Biol. 342: 129-138.
Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116(2): 281-297.
Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 6(5): 376-385.
Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev. 20(7): 759-771.
Kim VN (2006) Small RNAs just got bigger: Piwiinteracting RNAs (piRNAs) in mammalian testes. Genes Dev. 20(15): 1993-1997.
Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 102(39): 13944-13949.
Michael MZ, O' Connor SM, van Holst Pellekaan NG, Young GP, James RJ (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Molecular Cancer Research: MCR. 1(12): 882-891.
Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, Chen G, Wang Z (2007) The musclespecific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 13(4): 486-491.
Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Høydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G.(2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med. 13(5): 613-618.
Chiou TJ (2007) The role of microRNAs in sensing nutrient stress. Plant Cell Environ. 30(3): 323-332.
Tiscornia G, Tergaonkar V, Galimi F, Verma IM (2004) CRE recombinase-inducible RNA interference mediated by lentiviral vectors. Proc Natl Acad Sci U S A. 101(19): 7347-7351.
Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol. 24(11): 1420-1428.