2008, Number 2
<< Back Next >>
Rev Educ Bioquimica 2008; 27 (2)
Marcadores glicosilados en cáncer de mama
Gallegos VIB, Coutiño R, Martínez G, Hernández CP
Language: Spanish
References: 25
Page: 52-59
PDF size: 162.26 Kb.
ABSTRACT
Breast cancer is the second cause of death of women in
the world and when it is diagnosed opportunely can be
cured. Recently it has been observed that changes in the
oligosaccharides structures of membrane proteins are
related to the transformation processes and cellular
proliferation, which can originate breast cancer. In this
review we present a general overview of the glycosylated
markers associated to the breast cancer.
REFERENCES
Bloom HJG, Richardson WW (1957). Histologic grading and prognosis in breast cancer: A study of 1.709 cases of which 359 have been followed for 15 years. Br J Cancer 2: 353-377.
Andersen J, Thorpe SM, King WJ, Rose C, Christensen I, Rasmussen BB, Poulsen HS (1990). The prognostic value of immunohistochemical estrogen receptor analysis in paraffin-embedded and frozen sections versus that of steroid-binding assays. Eur J Cancer 26: 442-449.
Wittliff JL (1984). Steroid hormone receptors in breast cancer. Cancer 53: 630-643.
Holst F, Stahl PR, Ruiz C, Hellwinkel O, Jehan Z, Wendland M, Lebeau A, Terracciano L, Al-Kuraya K, Janicke F, Sauter G, Simon R (2007). Estrogen receptor alpha (ESR1) gene amplification is frequent in breast cancer. Nat Genet. 39(5):655-660.
Bardou VJ, Arpino G, Elledge RM, Osborne CK, Clark GM (2003). Progesterone receptor status significantly improves outcome prediction over estrogen receptor status alone for adjuvant endocrine therapy in two large breast cancer databases. J Clin Oncol. 21(10):1973- 1979.
Yu K D, Liu GY, Di GH, Wu J, Lu JS, Shen KW, Shen Z Z, Shao ZM (2007). Progesterone receptor status provides predictive value for adjuvant endocrine therapy in older estrogen receptor-positive breast cancer patients. Breast. 16(3):307-315.
Korkolis D, Ardavanis A, Yotis J, Kyroudi A, Gorgolis V, Kittas C (2001). HER-2/neu overexpression in breast cancer: an immunohistochemical study including correlations with clinicopathologic parameters, p53 oncoprotein and cathepsin D. Anticancer Res. 21: 2207-2212.
Jacobs TW, Gown A M, Yaziji H, Barnes MJ, Schnitt SJ (1999). Comparison of fluorescence in situ hybridization and immunohistochemistry form the evaluation of HER- 2/neu in breast cancer. J Clin Oncol. 17: 1974-1982.
Pauletti G, Godolphin W, Press MF, Slamon DJ (1996). Detection and quantitation of HER-2/neu gene amplification in human breast cancer archival material using fluorescence in situ hibridization. Oncogene. 13: 63-72.
Alexiev BA, Bassarova A V, Popovska SL, Popov AA, Christov CZ (1997). Expression of c-erbB-2 oncogene and p53 tumor suppressor gene in benign and malignant breast tissue: correlation with proliferative activity and prognostic index. Gen Diagn Pathol. 142:271-279.
Sjörgen S, Inganas M, Norberg T, Lindgren A, Nordgren H, Holberg L, Bergh J (1996). The p53 gene in breast cancer: prognostic value of complementary DNA sequencing versus immmunohistochemistry. J Natl Cancer Inst. 88: 173-182.
Carraway KL , Hull SR (1991). Cell surface mucin-type glycoprotein and mucin like domains. Glycobiology. 1: 131-138.
Brockhausen I (2006). Mucin-type O-glycans in human colon and breast cancer: glycodynamics and functions. EMBO Rep. 7:599-604.
Zhuang D, Yousefi S, Dennis JW (1991). Tn antigen and UDP-Gal:GalNAc alpha-R beta1-3Galactosyltransferase expression in human breast carcinoma. Cancer Biochem Biophys. 12: 185-198.
Cao Y, Karsten U, Otto G, Bannasch P (1999). Expression of MUC1, Thomsen-Friedenreich antigen, Tn, sialosyl-Tn, and alpha2,6-linked sialic acid in hepatocellular carcinomas and preneoplastic hepatocellular lesions. Virchows Arch 434: 503-509.
Van den Steen P, Rudd MP, Dwek AR, Opdenaker G. (1998). Concepts and Principles of O-glycosylation. Crit. Rev. Biochem. Mol. Biol. 33: 151-208.
Croce M V, Isla-Larrain M, Remes-Lenicov F, Colussi AG, Lacunza E, Kim KC, Gendler SJ, Segal-Eiras (2006). A MUC1 cytoplasmic tail detection using CT33 polyclonal and CT2 monoclonal antibodies in breast and colorectal tissue. Histol Histopathol. 21: 849-855.
Li YS, Kaneko M, Sakamoto DG, Takeshima Y, Inai K. (2006). The reversed apical pattern of MUC1 expression is characteristics of invasive micropapillary carcinoma of the breast. Breast Cancer. 13: 58-63.
Jeschke U, Mylonas I, Shabani N, Kunert-Keil C, Schindlbeck C, Gerber B, Friese K (2005). Expression of sialyl lewis X, sialyl Lewis A, E-cadherin and cathepsin-D in human breast cancer: immunohistochemical analysis in mammary carcinoma in situ, invasive carcinomas and their lymph node metastasis. Anticancer Res. 25: 1615-1622.
Rakha EA, Boyce RW, Abd El-Rehim D, Kurien T, Green AR, Paish EC, Robertson JF, Ellis IO (2005). Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC5AC and MUC6) and their prognostic significance in human breast cancer. Mod Pathol. 18: 1295-304.
Lis H, Sharon N (1988). Lectins: Carbohidrate-Specific Proteins That Mediate Cellular Recognition. Science Chem Rev. 98: 637-674.
Kawaguchi T, Takazawa H, Imai S, Morimoto J, Watanabe T, Kanno M, Igarashi S (2006). Expression of Vicia villosa agglutinin (VVA)-binding glycoprotein in primary breast cancer cells in relation to lymphatic metastasis: is atypical MUC1 bearing Tn antigen a receptor of VVA? Breast Cancer Res Treat. 98: 31- 43.
Brooks SA, Hall DM, Buley I (2001). GalNAc glycoprotein expression by breast cell lines, primary breast cancer and normal breast epithelial membrane. Br J Cancer. 28: 1014-1022.
Stanley MW, Kiang DT, Sibley RK (1986). Peanut lectin binding in breast carcinoma. Lack of correlation with estrogen receptor content. Cancer. 58(9): 2046- 2051.
Santaella A, Gallegos B, Perez E, Zenteno E, Hernández P (2007). Use of Amaranthus leucocarpus Lectin to Differentiate Cervical Dysplasia (CIN) Prep Biochem Biotechnol 37(3): 219-228.