2010, Number 2
<< Back Next >>
Rev Educ Bioquimica 2010; 29 (2)
SKIL: Un inhibidor de la vía de la citocina TGF-β
Domínguez-Hüttinger E, Macías-Silva M
Language: Spanish
References: 24
Page: 53-59
PDF size: 263.54 Kb.
ABSTRACT
”Sloan-Kettering-Institute Like” (
skil) is a very interesting gene that has been associated
to processes like embryo development, cancer development, immune response
and tissue regeneration. Alterations in the expression of SKIL normal levels contribute
to tumor development, thus SKIL is considered as both a tumor suppressor and
an oncoprotein. The main role of the SKIL protein is to act as a corepressor of the
TGF-β signal transduction pathway. SKIL functions as a transcriptional corepressor
that inhibits the TGF-β pathway interfering with the transcriptional activity of the
main TGF-β effectors, the Smad proteins, and by recruiting corepressors and histone
deacetilases. In absence of SKIL, Smads regulate the expression on TGF-β target
genes while they act as transcription factors. TGF-β induces the expression of the
gene
skil, but TGF-β also regulates negatively the protein levels of SKIL by inducing
its degradation via ubiquitin-proteasome system. This regulation constitutes a good
example of a negative feedback loop present in signal transduction pathways.
REFERENCES
Boyer P, Colmenares C, Stavnezer E, Hughes S (1993) Sequence and biological activity of chicken snoN cDNA clones. Oncogene 8: 457-466.
Nomura N, Sasamoto S, Ishii S, Date T, Matsui M, Ishizaki R (1989) Isolation of human cDNA clones of ski and the ski-related gene, sno. Nucleic Acids Res 17:5489–5500.
Pelzer T, Lyons G, Kim S, Moreaditj R (1996) Cloning and Characterization of the Murine Homolog of the sno Proto-Oncogene Reveals a Novel Splice Variant. Dev Dyn 205:114– 125.
Takaesu N, Hyman-Walsh C, Yee Y, Wisotzkey R, Stinchfield M, O´Connor M, Wotton D, Newfelf S (2006) dSno Facilitates Baboon Signaling in the Drosophila Brain by Switching the Affinity of Medea Away from Mad and Toward dSmad2. Genetics 174:1299-313.
Pearson-White S, Crittenden R (1997) Proto- oncogene Sno expression, alternative isoforms and immediate early serum response. Nucleic Acids Res 14:2930–2937.
Stroschein S, Wang W, Zhou S, Zhou Q, Luo K (1999) Negative Feedback Regulation of TGF-b Signalling by the SnoN Oncoprotein. Science 286:771-774.
Zhu Q, Pearson-White S, Luo K (2005) Requirement for the SnoN Oncoprotein in Transforming Growth Factor β-induced Oncogenic Transformation of Fibroblast Cell. Mol Cell Biol 25:10731-10744.
Tecalco-Cruz AC, Caligaris C, Sosa-Garrocho M, Ortíz-García L, Domínguez-Hüttinger E, Macías-Silva M (2009) Negative regulation of human skil gene promoter by SKIL co-repressor. (Manuscrito en preparación).
Rouyun Tn, Zhang X, Yang J, Liu Y, Li Y (2007) Molecular Basis for the Cell Type-Specific Induction of SnoN Expresión by Hepatocyte Growth Factor. J Am Soc Nephrol 18:2340 -2349.
Yatsula B, Lin S, Read A, Poholek A, Yates K, Yue D, Hui P, Perkin A (2005) Identification of Binding Sites of EVI1 in Mammalian Cells. J Biol Chem 280:30712-10722.
Bonni S, Wang H, Causing C, Kavsak P, Stroschein S, Luo K, Wrana J (2001) TGF-b induces assembly of a Smad2–Smurf2 ubiquitin ligase complex that targets SnoN for degradation. Nat Cell Biol 3:587-595.
Stroschein S, Bonni S, Wrana J, Luo K (2001) Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN. Genes Dev 15:2822–2836.
Nagano Y, Mavrakis K, Lee K, Fujii T, Koinuma D, Sase H, Yuki K, Isogaya K, Saitoh M, Imamura T, Episkopou V, Miyazono K, Miyazawa K (2007) Arkadia Induces Degradation of SnoN and c-Ski to Enhance Transforming Growth Factor-b Signaling. J Biol Chem 282:20492–20501.
Kajino T, Omori E, Ishii S, Matsumoto K, Ninomiya-Tsuji J (2007) TAK1 MAPK Kinase Kinase Mediates Transforming Growth Factor-b Signaling by Targeting SnoN Oncoprotein for Degradation. J Biol Chem 282:9475 –9481.
Vázquez-Macias A, Ruiz-Mendoza A, Fonseca- Sánchez M, Briones-Orta M, Macías-Silva M (2005) Downregulation of Ski and SnoN co-repressors by anisomycin. FEBS Lett 579:3701-3706.
Hsu Y, Sarker K, Pott I, Chan A, Netherton S, Bonni S (2006) Sumoylated SnoN Represses Transcription in a Promoter-specific Manner. J Biol Chem 281:33008-33018.
Wan Y, Liu X, Kirschner M (2001) The Anaphase- Promoting Complex Mediates TGF-b Signaling by Targeting SnoN for destruction. Mol Cell 8:1027-1039.
Steigmüller J, Konoshi Y, Huynh M, Yuan Z, DiBacco S, Bonni A (2006). Cell-Intrinsic Regulation of Axolal morphogenesis by the Cdh1-APC Target SnoN. Neuron 50:389-400.
Cai Y, Shen Z, Zhou C, Wang J (2006) Abnormal expression of Smurf2 during the process of rat liver fibrosis. Chin J Dig Dis 7:237-245.
Zhu Q, Krakowski A, Dunham E, Wang L, Bandyopadhyay A, Berdeaux R, Martin S, Sun L, Luo K (2007) Dual Role of SnoN in Mammalian Tumorigenesis. Mol Cell Biol 27:324–339.
Shinagawa T, Dong H, Xu M, Maekawa T, Ishii S (2000) The sno gene, which encodes a component of the histone deacetylation complex, acts as a tumor suppressor in mice. EMBO J 19:2280–2291.
Macías-Silva M, Wei L, Leu J, Crissey M, Taub R (2002) Up-Regulated Transcriptional Repressors SnoN and Ski Bind Smad Proteins to Antagonize Transforming Growth Factorb Signals during Liver Regeneration. J Biol Chem 277:28483-28490.
Pearson-White S, McDuffie M (2003) Defective T-Cell Activation Is associated with Augmented Transforming Growth Factor b Sensitivity in Mice with Mutations in the Sno Gene. Mol Cell Biol 23:5446–5459.
Wrighton KH, Liang M, Bryan B, Luo K, Liu M, Feng XH, Lin X (2007) Transforming growth factor-beta-independent regulation of myogenesis by SnoN sumoylation En: J Biol Chem 282:6517-24.