2012, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2012; 15 (1)
Vías de señalización asociadas a la esteroidogénesis
Gómez-Chang E, Larrea F, Martínez-Montes F
Language: Spanish
References: 53
Page: 24-36
PDF size: 275.58 Kb.
ABSTRACT
The biosynthesis of steroid hormones is necessary to maintain reproductive functions and body homeostasis. This process, which is carried out in acutely and chronically regulated steroidogenic tissues, depends on the activation of signaling pathways particularly mediated by the cyclic adenosine monophosphate dependent protein kinase (PKA). Data obtained by our and other groups in human placenta and other tissues, have clearly showed that dynamic phosphorylation catalyzed by PKA is related to steroidogenesis, including its hormonal regulation. It is known, however, that this process also involves the participation of other PKA independent signaling cascades, which are activated by trophic hormones, cytokines or growth factors and others such as calcium, chloride ions and arachidonic acid metabolites. The understanding of the stimulating factors, as well as the mechanisms that regulate the synthesis of steroid hormones, will allow us the identification of potential intervention sites that may contribute to maintain body homeostasis and different functions depending on them.
REFERENCES
Hu, J., Zhang, Z., Shen, W.J. & Azhar, S. Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr. Metab. (Lond.) 7, 47 (2010).
Granot, Z. et al. Proteolysis of normal and mutated steroidogenic acute regulatory proteins in the mitochondria: the fate of unwanted proteins. Mol. Endocrinol. 17, 2461-2476 (2003).
Manna, P.R., Dyson, M.T. & Stocco, D.M. Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol. Hum. Reprod. 15, 321-333 (2009).
Corso, M. & Thomson, M. Protein phosphorylation in Mitochondria from human placenta. Placenta 22, 432-439 (2001).
Thomson, M. Evidence of undiscovered cell regulatory mechanisms: phosphoproteins and protein kinases in mitochondria. Cell Mol. Life Sci. 59, 213-219 (2002).
Gorostizaga, A. et al. Tyrosine phosphatases in steroidogenic cells: Regulation and function. Mol. Cell Endocrinol. 265-66, 131-137 (2007).
Dremier, S., Kopperud, R., Doskeland, S.O., Dumon, J.E. & Maenhaut, C. Search for new cyclic AMP binding proteins. FEBS Lett. 546, 103-107 (2003).
Dodge-Kafka, K.L. &Kapiloff, M.S. The mAKAP signaling complex: Integration of AMPc, calcium, and MAP kinase signaling pathways. Eur. J. Cell Biol. 85, 593-602 (2006).
Aye, T.T. et al. Selectivity in enrichment of AMPc-dependent protein kinase regulatory subunits type I and type II and their interactors using modified AMPc affinity resins. Mol. Cell Proteomics 8, 1016-1028 (2009).
Taylor, S.S., Knighton, D.R., Zheng, J., Ten Eyck, L.F. & Sowadski, J.M. cAMP-dependent protein kinase and the protein kinase family. Faraday Discuss. 93, 143-152 (1992).
McKnight, G.S. et al. Cyclic AMP, PKA, and the physiological regulation of adiposity. Recent Prog. Horm. Res. 53, 139-159 (1998).
Taylor, S.S. et al. Signaling through AMPc and AMPc-dependent protein kinase diverse strategies for drug design. Biochim. Biophys. Acta 1748, 16-26 (2008).
Feliciello, A., Gottesman, M.E. & Avvedimento, E.V. cAMP-PKA signaling to the mitochondria: protein scaffolds, mRNA and phosphatases. Cell Signal 17, 279-287 (2005).
Livigni, A. et al. Mitochondrial AKAP121 links AMPc and src signaling to oxidative metabolism. Mol. Biol. Cell. 17, 263-271 (2006).
Gómez-Concha, C., Flores-Herrera, O., Olvera-Sánchez, S., Espinosa- García, M.T. & Martínez, F. Progesterone synthesis by human placental mitocondria is sensitive to PKA inhibition by H89. Int. J. Biochem. Cell Biol. 43, 1402-1411 (2011).
Pidoux, G. & Taskén, K. Specificity and spatial dynamics of protein kinase A signaling organized by A-kinase-anchoring proteins. J. Mol. Endocrinol. 44, 271-284 (2010).
Fleury, A., Mathieu, A.P., Ducharme, L., Hales, D.B. & LeHoux, J.G. Phosphorylation and function of the hamster adrenal steroidogenic acute regulatory protein (StAR). J. Steroid. Biochem. Mol. Biol. 91, 259-271 (2004).
Pollheimer, J. & Knöfler, M. Signalling pathways regulating the invasive differentiation of human trophoblasts: a review. Placenta 26, S21-30 (2005).
Sewer, M.B., Li, D., Dammer, E.B., Jagarlapudi, S. & Lucki, N. Multiple Signaling Pathways Coordinate CYP17 Gene Expression in the Human Adrenal Cortex. Acta Chim. Slov. 55, 53-57 (2008).
Horbinski, C. & Chu, C.T. Kinase signaling cascades in the mitochondrion: a matter of life or death. Free Radic. Biol. Med. 38, 2-11 (2005).
Stocco, D.M., Wang, X., Jo, Y. & Manna, P.R. Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol. Endocrinol. 19, 2647-2659 (2005).
Maloberti, P. et al. Silencing the expression of mitocondrial acyl-CoA thioesterase I and acyl-CoA synthetase 4 inhibits hormone-induced steroidogenesis. FEBS J. 272, 1804-1814 (2005).
Wang, X., Walsh, L.P., Reinhart, A.J. & Stocco, D.M. The role of arachidonic acid in steroidogenesis and steroidogenic acute regulatory (StAR) gene and protein expression. J. Biol. Chem. 275, 20204-20209 (2000).
Sanderson, T. The Steroid Biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxicol. Sci. 94, 3-21 (2006).
Moog-Lutz, C. et al. MLN64 exhibits homology with the steroidogenic acute regulatory protein (STAR) and is overexpressed in human breast carcinomas. Int. J. Cancer 71, 183-191 (1997).
Tuckey, R.C. Progesterone synthesis by the human placenta. Placenta 26, 273-281 (2005).
Nulsen, J.C. et al. Control of the steroidogenic machinery of the human trophoblast by cyclic AMP. J. Reprod. Fertil. Suppl. 37, 147-153 (1989).
Ringler, G.E. & Strauss, J.F. 3rd. In vitro systems for the study of human placental endocrine function. Endocr. Rev. 11, 105-123 (1990).
Maldonado-Mercado, M.G., Espinosa-García, M.T., Gómez- Concha, C., Monreal-Flores, J. & Martínez, F. Steroidogenesis in BeWo cells: role of protein kinase A and benzodiazepines. Int. J. Biochem. Cell Biol. 40, 901-908 (2008).
Duan, L., Yan, D., Zeng, W., Yang, X. & Wei, Q. Effect of progesterone treatment due to threatened abortion in early pregnancy for obstetric and perinatal outcomes. Early Hum. Dev. 86, 41-43 (2010).
Acín-Pérez, R. et al. Modulation of mitochondrial protein phosphorylation by soluble adenylyl cyclase amelioreates cytochrome oxidase defects. EMBO Mol. Med. 1, 392-406 (2009).
Wilson, J.D. Dihydrotestosterone formation in cultured human fibroblasts. J. Biol. Chem. 250, 3498-3504 (1975).
Lin, T., Wang, D., Hu, J. & Stocco, D.M. Upregulation of human chorionic gonadotrophin-induced steroidogenic acute regulatory protein by insulin-like growth factor in rat Leydig cells. Endocrine 8, 73-78 (1998).
Manna, P.R., Huhtaniemi, I.T., Wang, X.J., Eubank, D.W. & Stocco, D.M. Mechanisms of epidermal growth factor signaling: regulation of steroid biosynthesis and the steroidogenic acute regulatory protein in mouse Leydig tumor cells. Biol. Reprod. 67, 1393-1404 (2002).
Wang, X.J. et al. Interaction between arachidonic acid and AMPc signaling pathways enhances steroidogenesis and StAR gene expression in MA-10 Leydig tumor cells. Mol. Cell Endocrinol. 188, 55-63 (2002).
Bornstein, S.R., Rutkowski, H. & Vrezas, I. Cytokines and steroidogenesis. Mol. Cell Endocrinol. 215, 135-141 (2004).
Andric, S.A., Janjic, M.M., Stojkov, N.J. & Kostic, T.S. Protein kinase G-mediated stimulation of basal Leydig cell steroidogenesis. Am. J. Physiol. Endocrinol. Metab. 293, 1399-1408 (2007).
Cornejo Maciel, F., Poderoso, C., Gorostizaga, A., Paz, C. & Podestá, E.J. LH/chorionic gonadotropin signaling pathway involves protein tyrosine phosphatase activity downstream of protein kinase A activation: evidence of an obligatory step in steroid production by Leydig cells. J. Endocrinol. 170, 403-411 (2001).
Paz, C. et al. Protein tyrosine phosphatases are involved in LH/ chorionic gonadotropin and 8Br-AMPc regulation of steroidogenesis and StAR protein levels in MA-10 Leydig cells. J. Endocrinol. 175, 793-801 (2002).
García-Pérez, C. & Martínez, F. Los mecanismos que controlan la síntesis de progesterona en la placenta humana. REB 21, 181-189 (2002).
Sewer, M.B. & Waterman, M.R. AMPc-dependent transcription of steroidogenic genes in the human adrenal cortex requires a dual-specificity phosphatase in addition to protein kinase A. J. Mol. Endocrinol. 29, 163-174 (2002).
Hirakawa, T. & Ascoli, M. The lutropin/choriogonadotropin receptor-induced phosphorylation of the extracellular signalregulated kinases in Leydig cells is mediated by a protein kinase a-dependent activation of ras. Mol. Endocrinol. 17, 2189-2200 (2003).
Poderoso, C. et al. A mitochondrial kinase complex is essential to mediate an ERK1/2-dependent phosphorylation of a key regulatory protein in steroid biosynthesis. PLoS One 3, e1443 (2008).
Otis, M. & Gallo-Payet, N. Role of MAPKS in angiotensin IIinduced steroidogenesis in rat glomerulosa cells. Mol. Cell Endocrinol. 265-266, 126-130 (2007).
Carr, B.R. in William’s Textbook of Endocrinology (Saunders, W.B.) 751-817 (Hartcourt & Brace, Philadelphia, PA, 1998).
Weakly, B.S. Electron microscopy of the oocyte and granulosa cells in the developing ovarian follicles of the golden hamster. J. Anat. 100, 503-534 (1966).
Gore-Langton, R.E. & Armstrong, D.T. en The Physiology of Reproduction. (Knobil, E & Neill, J.D.) 571-627 (Raven Press, New York, 1994).
Baird, D.T. & Fraser, I.J. Concentration of estrone and estradiol- 17p in follicular fluid and ovarian venous blood of women. Clin. Endocrinol. 4, 171-175 (1969).
Baird, D.T., Burger, P., Heavon-Jones, G.D. & Scaramuzzi, R.J. The site of secretion of androstenedione in non-pregnant women. J. Endocrinol. 63, 201-212 (1974).
Ryan, K.J. & Petro, Z. Steroid biosinthesis by human ovarian granulosa and theca cells. J. Clin. Endocrinol. Metab. 26, 56-52 (1966).
Havelock, J.C., Rainey, W.E. & Carr, B.R. Ovarian granulosa cell lines. Mol. Cell. Endocrinol. 228, 67-78 (2004).
Chin, E.C. & Abayasekara, D.R. Progesterone secretion by luteinizing human granulose cells: a possible AMPc-dependent but PKAindependent mechanism involved in its regulation. J. Endocrinol. 183, 51-60 (2004).
Niswender, G.D. Molecular control of luteal secretion of progesterone. Reproduction 123, 333-339 (2002).