2011, Number 2
<< Back Next >>
Rev Educ Bioquimica 2011; 30 (2)
Transglicosilasas líticas asociadas a los sistemas de secreción en bacterias gram negativas
García-Gómez E, González-Pedrajo B
Language: Spanish
References: 30
Page: 45-55
PDF size: 499.46 Kb.
ABSTRACT
Gram-negative bacteria use diverse protein secretion systems for numerous aspects of their life cycle. During the assembly process these systems need to span the inner and outer membranes, the periplasmic space and the cell wall or peptidoglycan meshwork. In order to traverse the cell wall, secretion systems require specialized enzymes named transport lytic transglycosylases (LTs). LTs have been identified associated to several secretion systems and are proposed to make gaps in the peptidoglycan layer in a temporally and spatially controlled fashion, allowing the insertion of multiprotein complexes in the cell envelope.
REFERENCES
Thanassi DG, Hultgren SJ (2000) Multiple pathways allow protein secretion across the bacterial outer membrane. Curr Opin Cell Biol 12: 420-30.
Koraimann G (2003) Lytic transglycosylases in macromolecular transport systems of Gram-negative bacteria. Cell Mol Life Sci 60: 2371-88.
Holtje JV (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62: 181-203.
Vollmer W, Blanot D, de Pedro MA (2008) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32: 149-67.
Vollmer W, Joris B, Charlier P, Foster S (2008) Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 32: 259-86.
Scheurwater E, Reid CW, Clarke AJ (2008) Lytic transglycosylases: bacterial space-making autolysins. Int J Biochem Cell Biol 40: 586-91.
Holtje JV (1995) From growth to autolysis: the murein hydrolases in Escherichia coli. Arch Microbiol 164: 243-54.
Blackburn NT, Clarke AJ (2001) Identification of four families of peptidoglycan lytic transglycosylases. J Mol Evol 52: 78-84.
Beeckman DS, Vanrompay DC (2009) Bacterial Secretion Systems with an Emphasis on the Chlamydial Type III Secretion System. Curr Issues Mol Biol 12: 17-42.
Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62: 379-433.
Wallden K, Rivera-Calzada A, Waksman G (2010) Type IV secretion systems: versatility and diversity in function. Cell Microbiol 12: 1203-12.
Zahrl D, Wagner M, Bischof K, Bayer M, Zavecz B, Beranek A, Ruckenstuhl C, Zarfel GE, Koraimann G (2005) Peptidoglycan degradation by specialized lytic transglycosylases associated with type III and type IV secretion systems. Microbiology 151: 3455-67.
Zhang J, Wang X, Zhang Y, Zhang G, Wang J (2008) A conserved Hpa2 protein has lytic activity against the bacterial cell wall in phytopathogenic Xanthomonas oryzae. Appl Microbiol Biotechnol 79: 605-16.
Oh HS, Kvitko BH, Morello JE, Collmer A (2007) Pseudomonas syringae lytic transglycosylases coregulated with the type III secretion system contribute to the translocation of effector proteins into plant cells. J Bacteriol 189: 8277-89.
Chen HD, Frankel G (2005) Enteropathogenic Escherichia coli: unravelling pathogenesis. FEMS Microbiol Rev 29: 83-98.
Garcia-Gomez E, Espinosa N, de la Mora J, Dreyfus G, Gonzalez-Pedrajo B (2011) The muramidase EtgA from enteropathogenic Escherichia coli is required for efficient type III secretion. Microbiology 157: 1145-1160.
Chevance FF, Hughes KT (2008) Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol 6: 455-65.
Nambu T, Minamino T, Macnab RM, Kutsukake K (1999) Peptidoglycan-hydrolyzing activity of the FlgJ protein, essential for flagellar rod formation in Salmonella typhimurium. J Bacteriol 181: 1555-61.
Hirano T, Minamino T, Macnab RM (2001) The role in flagellar rod assembly of the N-terminal domain of Salmonella FlgJ, a flagellumspecific muramidase. J Mol Biol 312: 359-69.
de la Mora J, Ballado T, Gonzalez-Pedrajo B, Camarena L, Dreyfus G (2007) The flagellar muramidase from the photosynthetic bacterium Rhodobacter sphaeroides. J Bacteriol 189: 7998-8004.
Viollier PH, Shapiro L (2003) A lytic transglycosylase homologue, PleA, is required for the assembly of pili and the flagellum at the Caulobacter crescentus cell pole. Mol Microbiol 49: 331-45.
Mushegian AR, Fullner KJ, Koonin EV, Nester EW (1996) A family of lysozyme-like virulence factors in bacterial pathogens of plants and animals. Proc Natl Acad Sci U S A 93: 7321-6.
Zupan J, Hackworth CA, Aguilar J, Ward D, Zambryski P (2007) VirB1* promotes T-pilus formation in the vir-Type IV secretion system of Agrobacterium tumefaciens. J Bacteriol 189: 6551-63.
Kohler PL, Hamilton HL, Cloud-Hansen K, Dillard JP (2007) AtlA functions as a peptidoglycan lytic transglycosylase in the Neisseria gonorrhoeae type IV secretion system. J Bacteriol 189: 5421-8.
Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE, Moran AP, Athman R, Memet S, Huerre MR, Coyle AJ, DiStefano PS, Sansonetti PJ, Labigne A, Bertin J, Philpott DJ, Ferrero RL (2004) Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 5: 1166- 74.
Kohler PL, Cloud KA, Hackett KT, Beck ET, Dillard JP (2005) Characterization of the role of LtgB, a putative lytic transglycosylase in Neisseria gonorrhoeae. Microbiology 151: 3081-8.
Parisien A, Allain B, Zhang J, Mandeville R, Lan CQ (2007) Novel alternatives to antibiotics: bacteriophagues, bacterial cell wall hydrolases, and antimicrobial peptides. J Appl Microbiol 104: 1-13.
Baron C (2010) Antivirulence drugs to target bacterial secretion systems. Curr Opin Microbiol 13: 100-5.
Keyser P, Elofsson M, Rosell S, Wolf-Watz H (2008) Virulence blockers as alternatives to antibiotics: type III secretion inhibitors against Gram-negative bacteria. J Intern Med 264: 17-29.
Baron C, Coombes B (2007) Targeting bacterial secretion systems: benefits of disarmament in the microcosm. Infect Disord Drug Targets 7: 19-27.