2012, Number 1
<< Back Next >>
Revista Cubana de Salud Pública 2012; 38 (1)
Two risk adjustment methods for length of stay as indicator of hospital performance
Tamargo BTO, Jiménez PRE, Gutiérrez RAR, Mora DI
Language: Spanish
References: 25
Page: 29-44
PDF size: 135.89 Kb.
ABSTRACT
Introduction: the length of stay at hospital is the indicator of the rendered service efficiency par excellence, so any assessment of the hospital performance based on this indicator should take into account in one way or another the characteristics of the patients considered for the value estimation.
Objective: to evaluate two risk adjustment methods for the length of stay as indicator of the hospital performance.
Methods: a retrospective study was conducted at the internal medicine service of "Hermanos Ameijeiras" hospital from May to October, 2006. The sample of 606 medical histories was randomly divided into two parts, that is, one group comprised 304 medical histories for the predicted length of stay estimation from the multiple linear regression function and from the patient classification by related diagnosis groups, and the other included 302 medical histories for the validation of these two risk adjustment methods. In the validation phase, the capacity of each procedure to detect care deficiencies in another group of medical histories through the variance analysis and the ROC curve construction was evaluated.
Results: age, severity index, main diagnosis on discharge and its interactions, and sex influenced the length of stay. The area under the ROC curve with the multiple linear regression was 0.747 (p< 0,001) (95 % CI, 0.690-0.805) whereas the same are with the related diagnosis groups was 0,738 (p< 0,001) (95 % CI, 0.680-0.796).
Conclusions: both risk adjustment methods are equally effective in detecting efficiency problems, but the multiple linear regression model is better than the related diagnosis groups in estimating the predicted length of stay due to economic reasons. This aspect supports its use in poor-resource countries or institutions as is the case of underdeveloped countries.
REFERENCES
Jiménez Paneque RE. Indicadores de calidad y eficiencia de los servicios hospitalarios: una mirada actual. Rev Cubana Salud Pública [Internet]. 2004[citado 13 Ago 2009];30(1):17-36. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-34662004000100004&lng=es&nrm=iso&tlng=es
Jiménez R, Domínguez E, López L, Fariñas H. Difference between observed and predicted lenght of stay as indicator of patient care inefficiency. Internat J Quality Health Care. 1999;11(5):375-84.
Martins M, Blais R, da Costa Leite I. Mortalidade hospitalar e tempo de permanência: comparação entre hospitais públicos e privados na região de Ribeirão Preto, São Paulo, Brasil. Cad Saúde Pública. 2004;20(Sup 2):268-82.
Omachonu VK, Suthummanon S, Akcin M, Asfour S. Predicting length of stay for Medicare patients at a teaching hospital. Health Serv Manage Res. 2004;17(1):1-12.
Tamargo Barbeito TO, Jiménez Paneque RE. El ajuste por riesgo en la evaluación del desempeño hospitalario. Rev Cubana Salud Pública [Internet]. 2009 [citado 13 Ago 2009];35(3). Disponible en: http://bvs.sld.cu/revistas/spu/vol35_3_09/spu10309.htm
Marazzi A, Gardiol L, Duong HD. New approaches to reimbursement schemes based on patient classification systems and their comparison. Health Serv Manage Res. 2007;20(3):203-10.
Jiménez RE, Lam RM, Marot M, Delgado A. Observed-predicted length of stay for an acute psychiatric department, as an indicator of inpatient care inefficiencies. Retrospective case-series study. BMC Health Serv Res [Internet]. 2004 [citado 20 Marzo 2007];4(4). Disponible en: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC387834/pdf/1472-6963-4-4.pdf
Liu Y, Phillips M, Codde J. Factors influencing patients' length of stay. Aust Health Rev. 2001;24(2):63-70.
Horn SD, Horn RA. Reliability and validity of the severity of illness index. Med Care. 1986;24(2):159-78.
Jiménez RE, Vázquez J, Fariñas H. Construcción y validación de un índice de gravedad para pacientes hospitalizados en áreas clínicas. Gaceta Sanitaria, Xunta de Galicia. 1997;11:122-30.
Abizanda C. Comparación de APACHE II y SAPS como indicadores pronósticos. Med Intens. 1990;14(6):259-63.
Librero J, Marín M, Peiró S, Verdaguer Manujos A. Exploring the impact of complications on length of stay in major surgery diagnosis-related groups. Internat J Quality Health Care. 2004;16:51-57.
Librero J, Peiró S, Ordiñana R. Comorbilidad crónica y homogeneidad de los grupos diagnósticos relacionados. Gaceta Sanitaria. 1999;13(4):292-302.
Myers RP, Quan H, Hubbard JN, Shaheen AA, Kaplan GG. Predicting in-hospital mortality in patients with cirrhosis: results differ across risk adjustment methods. Hepatology. 2009;49(2):568-77.
Iucif N, Yazlle Rocha JS. Study of inequalities in hospital mortality using the Charlson comorbidity index. Rev Sáude Pública [Internet]. 2004 [citado 1 Abr 2009];38(6). Available in: http://www.scielo.br/pdf/rsp/v38n6/en_05.pdf
Ramiarina RA, Ramiarina BL, Almeidall RM, Coelho de Albuquerque Pereira W. Comorbidity adjustment index for the International Classification of Diseases, 10th revision. Rev Saúde Pública. 2008;42(4):590-7.
Jiménez Paneque RE. Utilidad de la curva ROC. Nota Metodológica. FMC 2004;11(8):511-32.
Becchi MA, Belleli F, Clarizio M, Carulli N. Characteristics of patients admitted to a Division of Internal Medicine. Is hospital the best setting of care. Ann Ital Med Int. 2005;20(4):233-44.
Everett G, Uddin N, Rudloff B. Comparison of Hospital Costs and Length of Stay for Community Internists, Hospitalists, and Academicians. J Gen Intern Med. 2007;22(5):662-7.
Horwitz Li, Kosiborod M, Lin Z, Krumholz HM. Changes in Outcomes for Internal Medicine Inpatients after Work-Hour Regulations. Ann Inter Med. 2007;147(2):97-103.
Sahavedan S, Earnest A, Koh YL, Lee KM, Soh CH, Ding YY. Improving the diagnosis related grouping model's ability to explain length of stay of elderly medical inpatients by incorporating function-linked variables. Ann Acad Med Singapore. 2004;33(5):614-22.
Gursel G, Demirtas S. Value of APACHE II, SOFA and CPIS Scores in Predicting Prognosis in Patients with Ventilator-Associated Pneumonia. Respiration. 2006;73:503-8.
Hartz AJ, Bade PF, Sigmann P, Guse C, Epple P, Goldberg KC. The evaluation of screeening methods to identify medically unnecessary hospital stay for patient with pneumonia. Int J. 1996;8:3-11.
Bernard AM, Mynard R, Rosevear JS, McMahon LF. The integrated inpatient management. Med Care. 1995;7:663-75.
Ryan S, Lowe CS, Hardes G. A quantitative approach to quality inprovement and resource allocation. Qual Clin Pra. 1995;15:11-6.