2012, Number 1
<< Back Next >>
Rev Cubana Med Trop 2012; 64 (1)
Classification of dengue hemorrhagic fever using decision trees in the early phase of the disease
Vega RB, Sánchez VL, Cortiñas AJ, Castro PO, González RD, Castro PM
Language: Spanish
References: 13
Page: 35-42
PDF size: 312.04 Kb.
ABSTRACT
Introduction: dengue is a viral disease with endemic behavior. At the beginning of the illness it is not possible to know which patients will have an unfavorable evolution and develop a severe form of dengue. However, some warning symptoms and signs may be present.
Objective: to apply decision tree techniques to the exploration of signs of severity in the early phase of the illness.
Methods: the study sample was made up of 230 patients admitted with dengue to “Pedro Kourí” Institute of Tropical Medicine in 2001. The variables considered for the classification were the signs, symptoms and laboratory exams on the third day of evolution of the illness. The algorithm of classification and regression trees using the Gini’s index was applied. Different loss matrices to improve the sensitivity were considered.
Results: the algorithm CART, corresponding to the best loss, had a sensitivity of 98,68% and global error of 0,36. Without considering loss, it obtained its sensitivity reached 74% with an error of 0,25. In both cases, the most important variables were platelets and hemoglobin.
Conclusions: the study submitted rules of decision with high sensitivity and negative predictive value of utility in the clinical practice. The laboratory variables resulted more important from the informational viewpoint than the clinical ones to discriminate clinical forms of dengue.
REFERENCES
Guzmán MG, García G, Kourí G. El dengue y el dengue hemorrágico: prioridades de investigación. Rev Panam Salud Publica. 2006;19:204-15.
Díaz FA, Martínez RA, Villar LA. Criterios clínicos para diagnosticar el dengue en los primeros días de enfermedad. Biomédica. 2006;26:22-30.
González D, Castro O, Rodríguez F, Portela D, Gracés M, Martínez A, et al. Descripción de la fiebre hemorrágica del dengue, serotipo 3, Ciudad de La Habana, 2001-2002. Rev Cubana Med Trop. 2008;60(1):48-54.
Lee VJ, Lye DC, Sun Y, Leo YS. Decision tree algorithm in deciding hospitalization for adult patients with dengue haemorrhagic fever in Singapore. Trop Med Int Health. 2009;I4:II54-9.
Martínez E. Dengue y dengue hemorrágico: aspectos clínicos. Salud Pública Mex. 1995;37:S29-S44.
Lee VJ, Lye DC, Sun Y, Fernandez G, Ong A, Leo YS. Predictive value of simple clinical and laboratory variables for dengue hemorrhagic fever in adults. J Clin Virol. 2008;42:34-9.
Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. Data Mining, inference and predictions.New York: Springer-Verlag; 2001.
Mackie I. M B. Principles of Data Mining. London: Springer- Verlag; 2007.
PAHO. Dengue and dengue hemorrhagic fever in the Americas guidelines for prevention and control. Washington: PAHO; 1994. (Scientific Publication No. 548)
Castro OE, González D, Pelegrino JL, Guzmán MG, Kourí G. Dengue y dengue hemorrágico en Cuba- Aportes a la clínica y manejo de casos. Rev Panam Infectol. 2004;6:39-42.
Abrahantes JC, Aerts M, Everbroeck BV, Saegerman C, Berkvens D, Geys H, et al. Classification of sporadic Creutzfeldt-Jakob disease based on clinical and neuropathological characteristics. Eur J Epidemiol. 2007;22:457-65.
Tanner L, Schreiber M, Low JG, Ong A, Tolfvenstam T, Lai YL, et al. Decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness. PloS Negl Trop Dis. 2008;2:1-9.
Potts JA, Gibbons RV, Rothman AL, Srikiatkhachorn A, Thomas SJ, Supradish P, et al. Prediction of dengue disease severity among pediatric thai patients using early clinical laboratory indicators. PloS Negl Trop Dis. 2010;4:769-76.