2011, Number 3
<< Back
Rev Cubana Invest Bioméd 2011; 30 (3)
Spatial fractal behavior in the lengthening of cerebral bloodstream distribution in Alzheimer disease
Domínguez MA, Garzón-Alvarado D
Language: Spanish
References: 39
Page: 424-238
PDF size: 383.68 Kb.
ABSTRACT
Alzheimer disease is a neurodegenerative process affecting millions of persons at
world scale. Even nowadays its causes are unknown. The fractal geometry is a
mathematical theory allows to measure objectively the irregularity of objects or the
natural processes; structures and physiologic behaviors of human body may be in a
mathematical way be characterized through the fractal dimension, which to
measure the irregularity or complexity degree of fractal. Distribution of cerebral
blood flow in Alzheimer's disease is very irregular, thus the fractal dimension is an
objective measure, which supposedly to quantify this distribution. The fractal
expansion coefficient is defined for those dynamic objects having fractal dimension
and estimates the fractal expansion on its surrounding space. This coefficient is
associated with the connection that may to has the fractal for its expansion. The
objective of present paperwas to determine the fractal expansion coefficients for
the cerebral blood flow distribution in 21 patients presenting with Alzheimer's
disease and in 11 normal subjects in the posterior and anterior cerebral zones,
compared values regarding the surrounding space where expansion occur. This
latter suggest the behavior of neuronal connections in assessed zones.
REFERENCES
Cassimjee N. Neurobiology of Alzheimer's Disease. Neuropsychological symptoms and premorbid temperament traits in Alzheimer's dementia [tesis de PhD]. Dept. Psych. Universidad de Pretoria, Sudafrica; 2003.
Alzheimer's Disease International. World Alzheimer Report; 2009.
Elnashaie S, Mahecha-Botero A. Towards understanding Alzheimer's and Parkinson's. Pharmaceuticals. 2005;2:29-31.
Guruprased BR, Kumar S. Computational Biology of Alzheimer's disease: Disease with Bioinformatics. VDM Verlag; 2010.
Gomez Ravetti M. Uncovering Molecular Biomarkers That Correlate Cognitive Decline with the Changes of Hippocampus' Gene Expression Profiles in Alzheimer's Disease. PLoS ONE. 2010;5(4).
Rishnamurthy V. Computational Identification of Alzheimer's Disease Specific Transcription Factors using Microarray Gene Expression Data. J Proteomics Bioinform. 2009;2:505-8.
Allam AR. Bioinformatic Analysis of Alzheimer's Disease and Type2 Diabetes Mellitus: A Bioinformatic Approach. J Proteomics Bioinform; 2008.
Stanley E . Statistical Physics and Alzheimer's Disease. Physica A. 1998;249:460-71.
Reis AES. A Computational Mathematical Model of Neuronal Death Caused by Oxidative Stress in Alzheimer's Disease. Proceeding of II International Symposium on Mathematical and Computational Biology. Río de Janeiro, Brasil; 2005.
Macdonals A, Pritchard D, A Mathematical model of Alzheimer's disease and the APOE Gene. Astin Bulletin. 2000;30(I):69-110.
Sharma V. Deterministic Chaos and Fractal Complexity in the Dynamics of cardiovascular behavior. The Open Cardiovascular Medicine Journal. 2009;3:110-23.
Fernandez E. Use of Fractal Theory in Neuroscience: Methods, Advantages, and Potential. Problems. Methods. 2009;24:309-21.
Weibel ER. Fractal geometry: a design principle for living organisms. Am J Physiol. 1991:261:L361-L369.
Bassingthwaighte JB, Liebovitch LS, West JB. Fractal Physiology. Oxford: Oxford University Press;1994. p. 29-31.
Havlin S. Fractals in Biology and Medicine. Chaos, Solitons & Fractals. 1995;6:171-201.
Rudolf Karch. Fractal properties of Perfusion Heterogeneity in Optimized Arterial Trees: A model Study. The Journal of General Physiology. 2003;122:307-21.
Sonntag M. Spatial heterogeneity of blood flow in the dog heart. I. Glucose uptake, free adenosine and oxidative/glycolytic enzyme activity. Pflugers Arch. 1996;432:439-50.
Glenny RW, Robertson HT. Fractal modeling of pulmonary blood flow heterogeneity. J Appl Physiol. 1991;70:1024-30.
Nagao M Murase K. Measurement of heterogeneous distribution on Technegas SPECT images by three-dimensional fractal analysis. Ann Nucl Med. 2002;16:369-76.
Iversen PO, Nicolaysen G. Fractals describe blood flow heterogeneity within skeletal muscle and within myocardium. Am J Physiol. 1995;268:H112H116.
Nagao M. Heterogeneity of Cerebral Blood Flow in frontotemporal lobar degeneration and Alzheimer's disease. Eur J Nucl Med Mol Imaging. 2004;31:162-8.
Nagao M. Fractal analysis of Cerebral Blood Flow distribution in Alzheimer's disease. J Nucl Med. 2001;42:1446-50.
Nagao M. Heterogeneity of posterior limbic perfusion in very early Alzheimer's disease. Neuroscience Research. 2006;55:285-91.
Waliszewski P, Konarski J. Fractal Strucutre of Space and Time is Necessary for the Emergence of Self-Organization, Connectiviy, and Collectivity in Cellular System. Fractals in Biology and Medicine. 2002;vol. III.
Waliszewski P. Self-similarity, Collectivity, and evolution of fractal dynamics during retinoid-induced differentiation of cancer cell population. Fractals. 1999;7(2):139-49.
Davies P Maloney AJF. Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet. 1976;2:1403.
Whitehouse PJ. Alzheimer's disease: evidence of selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol.1981;10:122-6.
Savva G, Wharton S. Age, Neuropathology, and Dementia. The New England Journal of Medicine. 2009;360(22).
Tomlinson BE, Corsellis JA. Ageing and the dementias. In: Adams JH, Corsellis JA, Duchen LW (editores). Greenfield's Neuropathology. 4ta. ed. New York: John Wiley and Sons;1984. p. 951-1025.
Insausti R, Insausti AM, Sanz E, Moreno M. Bases morfológicas de la atrofia cortical cerebral en la senescencia y en la enfermedad de Alzheimer. ANALES Sis San Navarra. 1997;20(3):33-8.
Rodríguez J. Theoretical generalization of normal and sick coronary arteries with fractal dimensions and the arterial intrinsic mathematical harmony. BMC Medical Physics. 2010;10(1).
Rodriguez J. Comportamiento fractal del repertorio T específico contra el alérgeno Poa P9. Rev Fac Med Univ Nac Colombia.2005;53(2):72-8.
Rodriguez J. Descripción matemática con dimensiones fractales de células normales y con anormalidades citológica de cuello uterino. Rev Cienc Salud. 2006;4(2):58-63.
Rodriguez J. Medidas fractales de radiografías de tórax de pacientes con diferentes patologías. Rev Cienc Salud. 2006;4(1):31-8.
Rodriguez J. Comportamiento fractal del ventrículo izquierdo durante la dinámica cardiaca. Revista Colombiana de Cardiología. 2006;13(3).
Kyriazis Marios. Practical applications of chaos theory to the modulation of human ageing: nature prefers chaos to regularity. Biogerontology. 2003;4:75-90.
Goldberger AL. Fractal dynamics in physiology: Alterations with disease andaging. Proc Natl Acad Sci USA. 2002;99(1).
Goldberger AL, Peng CK, Lipsitz A. What is physiologic complexity and how does it change with aging and disease? Neurobiol Aging. 2002;23(1):23-6.
Holman BL, Devous MD. Functional brain SPECT: the emergence of a powerful clinical method? J Nucl Med. 1992;33:1888-904.