2011, Number 3
<< Back Next >>
Rev Cubana Invest Bioméd 2011; 30 (3)
Preliminary computation form of the cerebral surface development
Ramírez A, Duque-Daza CA, Garzón-Alvarado DA
Language: Spanish
References: 35
Page: 412-423
PDF size: 228.35 Kb.
ABSTRACT
Cerebral cortex is a gray layer including neuron bodies covering the cerebral
hemispheres and whose thickness fluctuates from 1.25 mm in the occipital lobule to
4 mm in the anterior lobule. Due to the many folds present, la cerebral surface is a
thirty times greater than the cranial surface. These folds create the cerebral
convolutions, grooves and fissures defining areas with determined functions,
divided into five lobules. La convolutions formation may to vary among subjects
and are an important characteristic of brain formation. These patterns may be
represented in a mathematical way like Turing patterns. The aim of present paper
was to design a phenomenological model describing the formation of convolutions
patterns occurring in the cerebral cortex by means of diffusion reaction equations
with parameters in the Turing space. To study la formation of patterns it is
necessary to solve some numerical examples on simplified geometries of a brain.
For numerical solution authors used the finite elements method together with the
Newton-Raphson method. The numerical examples demonstrate that this model
may to represent the folds formation in the cerebral cortex and to reproduce
pathologies of the convolutions formation, such as the polymicrogyria and
lissencephalous.
REFERENCES
Pocock Gillian, Richards Christopher D. Human Physiology: The Basis of Medicine, 3rd ed. Oxford Core Texts; 2006.
Dufour R, Delamarche A, Multon, Perlemuter L. Anatomie, physiologie, biomécanique en STAPS. París: Editions Masson; 2002.
Lefevre J, Mangin J. A Reaction-Diffusion Model of human Brain Development. PLOS Computational Biology. 2010;6(4):1-10.
Gannong W. Review of Medical Physiology. LANGE Basic Science. Nueva York: Ed. Mc Graw Hill, 2005.
Regis J, Mangin J, Ochiai T, Frouin V, Riviere D, et al. «Sulcal Root'' Generic Model: a Hypothesis to Overcome the Variability of the Human Cortex Folding Patterns. Neurologia medico-chirurgica. 2005;45:1-17.
Ropper A, Samuels M. Adams V. Principles of Neurology, 9th ed. Nueva York: Mc Graw Hill; 2005.
Mota V, Valdivieso O, Quiroz L, Criales J. Lisencefalia. Gac Méd. 2005;141(5):441-2.
W Le Gros Clark. Deformation patterns in the cerebral cortex. Essays on Growth and Form; 1945. p. 1-22.
Richman D, Stewart R, Hutchinson J, Caviness Jr. V. Mechanical Model of Brain Convolutional Development. Science. 1975;189:18-21.
Toro R, Burnod Y. A Morphogenetic Model for the Development of Cortical Convolutions. Cerebral Cortex. 2005;15:1900-13.
P Rakic. Neuroscience: genetic control of cortical convolutions. Science Signaling. 2004;303:1983.
Cartwright J. Labyrinthine Turing Pattern Formation in the Cerebral Cortex. Journal of Theoretical Biology. 2002;217:97-103.
Chenn A, Walsh C. Regulation of Cerebral Cortical Size by Control of Cell Cycle Exit in Neural Precursors. Science. 2002;297(5580):365-9.
Meinhardt H. Models of Biological Pattern Formation. New York: AcademicPress; 1982.
Madzvamuse A. Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains. J Comp Phys. 2005;24(1):239-63.
Madzvamuse A, Sekimura T, Thomas RDK, Wathen AJ, Maini PK. A moving grid finite element method for the study of spatial pattern formation in Biological problems. In: Noji S, Nueno N, Maini PK, Sekimura T. Morphogenesis and Pattern Formation in Biological Systems Experiments and Models. Tokyo: Ed. Springer-Verlag; 2003. p. 59-65.
Madzvamuse A, Maini PK, Wathen AJ. A moving grid finite element method applied to a model biological pattern generator. J Comp Phys. 2003;190:478-500.
Madzvamuse A, Thomas RDK, Maini PK, Wathen AJ. A numerical approach to the study of spatial pattern formation in the ligaments of arcoid bivalves, Bull. Math Biol. 2002;64:501-30.
Meinhardt A, Geirer and H. A theory of biological pattern formation. Kybernetik. 1972;12(17):30-9.
Chaplain M, Ganesh AJ, Graham IG. Spatio-temporal pattern formation on spherical surfaces: Numerical simulation and application to solid tumor growth. J Math Biol. 2001;42:387-423,.
Turing A. The chemical basis of morphogenesis. Phil Trans R Soc.1952;237:37-72.
Garzón D. Simulación de procesos de reacción-difusión: Aplicación a la morfogénesis del tejido óseo [Ph.D. Thesis]. Universidad de Zaragoza, Zaragoza, España; 2007.
Wit A De. Spatial patterns and spatiotemporal dynamics in chemical systems. Adv Chem Phys. 1999;109:435-513.
Maini PK, Painter KJ, Chau HNP. Spatial pattern formation in chemical and biological systems. J Chem Soc Faraday Trans. 1997:93:3601-10.
Showalter R, Kapral and K. Chemical Waves and Patterns. Kluwer;1995.
Harrison L, Wehner S, Holloway D. Complex morphogenesis of surfaces:theory and experiment on coupling of reaction-diffusion patterning to growth. Faraday Discussions. 2002;120:277-93.
Holloway D, Harrison L. Pattern selection in plants: Coupling chemical dynamics to surface growth in three dimensions. Annals of Botany. 2008;101(361).
Hughes TJR. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Courier Dover Publications; 2003.
Hoffman J. Numerical Methods for Engineers and Scientists. Nueva York: McGraw Hill; 1992.
Holzapfel G A. Nonlinear solid mechanics. John Wiley; 2000.
Belytschko T, Liu WK, Moran B. Nonlinear Finite Elements for Continua and Structures. West Sussex:John Wiley and Sons; 2000.
Maini EJ, Crampin PK. Reactiondiffusion models for biological pattern formation Meth Appl Anal. 2001;8(3):415-28.
Sick S, Reinker S, Timmer J, Schlake T. WNT and DKK determine hair follicle spacing through a reactiondiffusion mechanism. Science. 2006;314:1447-50.
Madzvamuse Anotida, Maini Philip K. Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains. Journal of Computational Physics. 2007;225(1):100-19.
Garzón-Alvarado GA, García-Aznar JM, Doblaré M. Appearance and location of secondary ossification centres may be explained by a reactiondiffusion mechanism. Comput Biol Med. 2009;39:554-61.