2011, Number 2
Next >>
Rev Cubana Invest Bioméd 2011; 30 (2)
Effects of treatment with Compvit B, orotic acid or their combination on the recovery of spatial memory in rats with fimbria-fornix lesion
González GOT, Almaguer MW, Ramírez FM, Vallejo MA, Bergado RJA
Language: Spanish
References: 46
Page: 194-207
PDF size: 191.13 Kb.
ABSTRACT
Vitamin therapies have been widely used in Neurology for the treatment of neuritis
or the correction of metabolic deficits. In Cuba, Compvit® (B1, B6 and B12
vitamins) have been produced since several years. Orotic acid, also called vitamin
B13 is a natural product showing nootropic actions in studies with young and old
cognitively impaired animals. The present paper reports the results of a study
conducted to assess the therapeutic potentials of Compvit® and orotic acid, in the
recovery of cognitive abilities in fimbria-fornix lesioned animals, a lesion known to
severely impair learning abilities. The results confirm positive effects of each
vitamin treatment to improve the cognitive abilities affected by lesion. Although
none of the products used, neither their combination, was able to raise the
cognitive performance to the level of non-lesioned animals, both of them achieve
significant improvement compared to placebo. The present paper constitutes
additional evidence favoring the therapeutic use of vitamin compounds as part of
neurorestorative treatments.
REFERENCES
Bergado Rosado JA, Almaguer Melian W. Mecanismos celulares de la neuroplasticidad. Rev Neurol. 2000;31:1074-95.
Kleim JA, Barbay S, Nudo RJ. Functional reorganization of the rat motor cortex following motor skill learning. J Neurophysiol. 1998;80:3321-5.
Nudo RJ. Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehabil Med. 2003:7-10.
Celnik PA, Cohen LG. Modulation of motor function and cortical plasticity in health and disease. Restor Neurol Neurosci. 2004;22:261-8.
Cohen LG, Chen R, Celnik P. Functional relevance of cortical plasticity. In: Grafman J, Christen Y, editors. Neuronal plasticity: Building a bridge from the laboratory to the clinic. Berlin: Springer-Verlag; 1999; p. 64-77.
Cauraugh JH. Coupled rehabilitation protocols and neural plasticity: upper extremity improvements in chronic hemiparesis. Restor Neurol Neurosci. 2004;22:337-47.
Komitova M, Johansson BB, Eriksson PS. On neural plasticity, new neurons and the postischemic milieu: An integrated view on experimental rehabilitation. Exp Neurol. 2006;199:42-55.
Lippert-Gruner M, Maegele M, Pokorny J, Angelov D, Svestkova O, Wittner M, et al. Early rehabilitation model shows positive effects on neural degeneration and recovery from neuromotor deficits following traumatic brain injury. Physiol Res. 2007;56:359-68.
Borlongan CV, Cahill DW, Sanberg PR. Locomotor and passive avoidance deficits following occlusion of the middle cerebral artery. Physiol Behav. 1995;58:909-17.
Ramic M, Emerick AJ, Bollnow MR, O'brien TE, Tsai SY, Kartje GL. Axonal plasticity is associated with motor recovery following amphetamine treatment combined with rehabilitation after brain injury in the adult rat. Brain Res. 2006;1111:176-86.
Apfel SC, Kessler JA. Neurotrophic factors in the treatment of peripheral neuropathy. Ciba Found Symp. 1996;196:98-108.
Bergado JA, Fernández CI, Gómez-Soria A, González O. Chronic intraventricular infusion with NGF improves LTP in old cognitively-impaired rats. Brain Res. 1997;770:1-9.
Fernández CI, Soto J, González O, González ME, Quijano Z. Neurorestorative techniques as experimental approach to Alzheimer's disease treatment. Mol Chem Neuropathol. 1995;24:241-4.
Lang UE, Muhlbacher M, Hesselink MB, Zajaczkowski W, Danysz W, Nker-Hopfe H, et al. No nerve growth factor response to treatment with memantine in adult rats. J Neural Transm. 2004;111:181-90.
Gomez-Pinilla F. Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci. 2008;9:568-78.
Spencer JP. Food for thought: the role of dietary flavonoids in enhancing human memory, learning and neuro-cognitive performance. Proc Nutr Soc. 2008;67:238-52.
van der Beek EM, Kamphuis PJ. The potential role of nutritional components in the management of Alzheimer's Disease. Eur J Pharmacol. 2008;585:197-207.
Bryan J, Calvaresi E, Hughes D. Short-term folate, vitamin B@12 or vitamin B@6 supplementation slightly affects memory performance but not mood in women of various ages. J Nutr 2002;132:1345-56.
VITATOPS Trial Study Group. The VITATOPS (Vitamins to Prevent Stroke) Trial: rationale and design of an international, large, simple, randomised trial of homocysteine-lowering multivitamin therapy in patients with recent transient ischaemic attack or stroke. Cerebrovasc Dis. 2002;13:120-6.
Anastasi G, Antonelli ML, Biondi A, Vinci G. Orotic acid: a milk constituent Enzymatic determination by means of a new microcalorimetric method. Talanta. 2000;52:947-52.
Hallanger Le, Laakso Jw, Schultze Mo. Orotic acid in milk. J Biol Chem. 1953;202:83-9.
Bergado JA, Krug M, Ruthrich H, Matthies H. Orotate improves memory and enhances synaptic long-term potentiation in active avoidance behaviour in rats with perforant path stimulation as the conditioned stimulus. Eur J Pharmacol. 1988;157:155-63.
Bergado Rosado JA, Rüethrich H, Matthies H. La estimulación eléctrica de la vía perforante como estímulo condicionado en shuttle box. Efecto del orotato de metilglucamina sobre la retención. Rev Cubana Invest Biomed. 1987;6:347-59.
Ott T, Matthies H. Effect of orotic acid on the retrograde amnesia induced by electroconvulsive shock. Psychopharmacologia. 1971;20:16-21.
Matthies H, Fahse C, Lietz W. Effect of RNA-precursors on the maintenance of long-term memory. Psychopharmacologia. 1971;20:10-5.
Ruthrich HL, Wetzel W, Matthies H. Postnatal orotate treatment: effects on learning and memory in adult rats. Psychopharmacology (Berl). 1979;63:25-8.
Almaguer-Melian W, Vallejo A, Ramírez M, Capdevila V, Rosillo JC, Bergado- Rosado JA. Estudio comparativo de la lesión bilateral de corteza entorrinal y de la fimbria-fórnix. Rev Neurol. 2003;37:619-22.
Hedreen JC, Bacon SJ, Price DL. Modified Histochemical Technique to Visualize Acetylcholiesterase-containing Axons. J Histochem Cytochem. 1985;33:134-40.
Adelmann G, Deller T, Frotscher M. Organization of identified fiber tracts in the rat fimbria-fornix:an anterograde tracing and electron microscopic study. Anat Embryol (Berl). 1996;193:481-93.
Cassel J-C, Duconseille E, Jeltsch H, Will B. The fimbria-fornix/ cingular bundle pathways: a review of neurochemical and behavioural approaches using lesions and transplantation techniques. Prog Neurobiol. 1997;51:663-716.
Jackisch R, Neufang B, Hertting G, Jeltsch H, Kelche C, Will B, et al. Sympathetic sprouting: Time course of changes of noradrenergic, cholinergic, and serotonergic markers in the denervated rat hippocampus. J Neurochem. 1995;65:329-37.
Balse E, Suhr R, Haaf A, Kelche C, Jackisch R, Cassel JC. The potentiation of amphetamine-induced hyperlocomotion by fimbria-fornix lesions in rats is abolished by intrahippocampal grafts rich in serotonergic neurons. Neurosci Lett. 1999;265:79-82.
Cassel J-C, Cassel S, Galani R, Kelche C, Will B, Jarrard L. Fimbria-fornix vs selective hippocampal lesions in rats: Effects on locomotor activity and spatial learning and memory. Neurobiol Learn Mem. 1998;69:22-45.
Coutureau E, Galani R, Jarrard LE, Cassel JC. Selective lesions of the entorhinal cortex, the hippocampus, or the fimbria-fornix in rats: a comparison of effects on spontaneous and amphetamine-induced locomotion. Exp Brain Res. 2000;131:381-92.
Oddie SD, Kirk IJ, Gorny BP, Whishaw IQ, Bland BH. Impaired dodging in foodconflict following fimbria-fornix transection in rats: a novel hippocampal formation deficit. Brain Res Bull. 2002;57:565-73.
Devan BD, White NM. Parallel information processing in the dorsal striatum: relation to hippocampal function. J Neurosci 1999;19:2789-98.
Anglade F, Christin D, Marchaland C, Troullier G, Baudoin C, Chapouthier G. Analysis of the behaviour of rats in the Morris water-maze: new methodology and pharmacological application. C R Acad Sci Paris. 1993;316:603-6.
D'Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. Brain Res Rev. 2001;36:60-90.
Gallagher M, Nicolle MM. Animal models of normal aging: Relationship between cognitive decline and markers in hippocampal circuitry. Behav Brain Res. 1993;57:155-62.
Granholm AC, Sanders LA, Crnic LS. Loss of cholinergic phenotype in basal forebrain coincides with cognitive decline in a mouse model of Down's syndrome. Exp Neurol 2000;161:647-63.
Ikegami S, Shumiya S, Kawamura H. Age-related changes in radial-arm maze learning and basal forebrain cholinergic systems in senescence accelerated mice (SAM). Behav Brain Res. 1992;51:15-22.
Ikegami S. Behavioral impairment in radial-arm maze learning and acetylcholine content of the hippocampus and cerebral cortex in aged mice. Behav Brain Res. 1994;65:103-11.
Van der Zee CE, Lourensen S, Stanisz J, Diamond J. NGF deprivation of adult rat brain results in cholinergic hypofunction and selective impairmentes in spatial learning. Eur J Neurosci. 1995;7:160-8.
Carrillo-Mora P, Giordano M, Santamaría A. Spatial memory: Theoretical basis and comparative review on experimental methods in rodents. Behav Brain Res. 2009;203:151-64.
Rosenfeldt FL. Metabolic supplementation with orotic acid and magnesium orotate. Cardiovasc Drugs Ther. 1998;12 Suppl 2:147-52:147-52.
van Praag H. Exercise and the brain: something to chew on. Trends Neurosci. 2009;32:283-90.