2012, Number 2
<< Back Next >>
Salud Mental 2012; 35 (2)
Efecto de la estimulación vagal sobre los cambios inducidos por la epilepsia en la organización temporal del sueño en el gato
Martínez A
Language: Spanish
References: 72
Page: 155-163
PDF size: 909.51 Kb.
ABSTRACT
Clinical and experimental observations have demonstrated a relationship between epilepsy and sleep. During slow wave sleep (SWS), facilitation of the epileptic activity has been observed, as well as an inhibition of this activity during the rapid eye movement (REM) stage. On the other hand, during epileptic seizures, sleep inhibition is manifest, but when epileptic activity is present without seizures, an increase in cortical synchronization is encountered. Vagus nerve electrical stimulation (VNS) induces synchronization or desynchronization of cortical activity depending on the stimulation parameters. We have described an inhibition of generalized convulsive activity induced either by electrical (kindling) or chemical (penicillin) stimulation of the temporal lobe amygdala. It has also been demonstrated that VNS induces ponto-geniculo-occipital activity thus suggesting that VNS exerts an influence on epilepsy and sleep.
The aim of this study was to analyze the effect of chronic electrical stimulation of the vagus nerve on epilepsy-induced changes in the temporal organization of sleep and wakefulness stages.
Ten male cats were stereotaxically implanted to record conventional sleep. In addition, a bipolar stainless steel electrode bound to a cannula was directed to the central nucleus of the temporal lobe amygdala. Finally, a bipolar hook stainless steel electrode was fixed on the left vagus nerve at the level of the larynx. One microliter of saline solution containing 100 IU of sodium penicillin G (Pn) was injected into the amygdala to induce an epileptic state. The left vagus nerve was stimulated with 30-s impulses in an hour, five times a day; subsequently brain electrical activity was recorded for 8 hours.
The Pn injection elicited interictal spikes and changes in the temporal organization of sleep and wakefulness stages. The temporal organization of these stages exhibited the following variations: a) increase in the number of phases during wakefulness, b) increment in the number of phases during SWS-I and a diminution in the mean duration of this phase, c) SWS-II total time was increased as well as its percentage, d) latency of REM sleep increased, whereas the number of phases and the total time of this phase decreased. VNS in presence of Pn produced the following changes: a) increase in the latency of the appearance of spikes in 88%, and b) reduction of spike frequency in 40%. With regard to the temporal organization of sleep and wakefulness stages, we observed: a) decrease in the number and total time of SWS-I and SWS-II phases and b) diminution in the latency of onset of the first REM sleep.
VNS reverted REM sleep inhibition induced by epilepsy, as well as caused increase in wakefulness and decrease in cortical synchronization and interictal epileptic activity. These effects suggest inactivation of areas that induce REM sleep and also of areas that induce the generalization of epileptic activity localized in brain stem, which send their projections to the anterior brain. With respect to the decrease in both cortical synchronization and somnolence, this might be due to the inhibition, via the solitary tract and locus coeruleus nuclei, of thalamic areas (reticular nucleus), which generate the cortical synchronization. The increase in wakefulness may be due to VNS activation of the basalis nucleus (this pathway originates in the brain stem), which is a system that regulates awake and attention behaviors by its projections, which traverse the thalamic nuclei and connect to the cerebral cortex.
REFERENCES
Ben-Menachem E, Hamberger A, Hedner T, Hammond EJ et al. Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Res 1995;20:221-227.
Hammond E, Uthman BM, Wilder BJ, Ben-Menachem E et al. Neurochemical effects of vagus nerve stimulation in humans. Brain Res 1992;583:300-303.
Malow BA, Edwards J, Marzec M, Sagher O et al. Vagus nerve stimulation reduces daytime sleepiness in epilepsy patients. Neurology 2001;57:879-884.
Olejniczak PW, Fisch BJ, Carey M, Butterbaugh G et al. The effect of vagus nerve stimulation on epileptiform activity recorded from hippocampal depth electrodes. Epilepsia 2001;42:423-429.
Lockard JS, Congdon WC, Ducharm E. Feasibility and safety of vagal stimulation in monkey model. Epilepsia 1990;(Supl 2)31:20-26.
McLachlan RS. Suppression of interictal spikes and seizures by stimulation of the vagus nerve. Epilepsia 1993;34:918-923.
Fernández-Guardiola A, Martínez A, Valdés-Cruz A, Magdaleno-Madrigal VM et al. Vagus nerve chronic stimulation in cats: effects on epileptogenesis (amygdala electrical kindling): behavioral and electrographic changes. Epilepsia 1999;40:822-829.
Martínez A, López-Ruiz E, Vega-Flores G, Fernández-Mas R et al. Efecto de la estimulación del nervio vago sobre la epilepsia focal amigdalina en la rata. Salud Mental 2004;27:62-72.
Chase MH, Sterman MB, Clemente CD. Cortical and subcortical patterns of response to afferent vagal stimulation. Exp Neurol 1966a;16:36-49.
Chase MH, Nakamura Y, Clemente CD, Sterman MB. Afferent vagal stimulation: neurographic correlates of induced EEG synchronization and desynchronization. Brain Res 1967b; 5:236-249.
Golanov EV, Reis DJ. Neurons of nucleus of the solitary tract synchronize the EEG and elevate cerebral blood flow via a novel medullary area. Brain Res 2001;892:1-12.
Magnes J, Moruzzi G, Pompeiano O. Synchronization of the EEG produced by low frequency electrical stimulation of the region of the Solitary Tract. Arch Ital Biol 1961;99:33-61.
Valdés-Cruz A, Magdaleno-Madrigal VM, Martínez-Vargas D, Fernández-Mas R et al. Chronic stimulation of the cat vagus nerve: effect on sleep and behavior. Prog Neuro-Psychopharmacol Biol Psychiat 2002;26:113-118.
Nichols JA, Nichols AR, Smirnakis SM, Engineer ND et al. Vagus nerve stimulation modulates cortical synchrony and excitability through the activation of muscarinic receptors. Neuroscience 2011;189:207–214.
Puizillout JJ, Ternaux JP, Foutz AS, Dell P. Slow wave sleep with phasic discharges. Triggering by vago-aortic stimulation. Electroencephalogr Clin Neurophysiol 1973;3:21-37.
Puizillout JJ. Vago-aortic nerves stimulation and REM sleep: Evidence for a REM-triggering and a REM-maintenance factor. Brain Res 1976;111:181-184.
Deschenes M, Paradis M, Roy JP, Steriade M. Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges. J Neurophysiol 1984;51:1196-1219.
Steriade M, Deschenes M, Domich L, Mulle C. Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. J Neurophysiol 1985;54:1473-1497.
Marks GA, Roffwarg HP. Spontaneous activity in the thalamic reticular nucleus during the sleep/wake cycle of the freely-moving rat. Brain Res 1993;623:241-248.
Autret A. Sleep and intra-ictal epileptic electroencephalographic activities. Neurophysiol Clin 1995;25:263-282.
De Curtis M, Librizzi L, Biella G. Discharge threshold is enhanced for several seconds after a single interictal spike in a model of focal epileptogenesis. Eur J Neurosci 2001;14:174-178.
Engel JJr, Blander R, Griffith NC, Caldecott-Hazard S. Neurobiological evidence for epilepsy-induced interictal disturbances. Adv Neurol 1991;55:97-109.
Glenn LL, Steriade M. Discharge rate and excitability of cortically projecting intralaminar thalamic neurons during waking and sleep states. J Neurosci 1982;2:1387-1404.
Magdaleno-Madrigal VM, Valdés-Cruz A, Martínez-Vargas D, Martínez A, Almazán S et al. Effect of electrical stimulation of the nucleus of the solitary tract on the development of electrical amygdaloid kindling in cat. Epilepsia 2002;43:964-969.
Reinoso-Barbero F, De Andrés I. Effects of opioid microinjections in the nucleus of the solitary tract on the sleep-wakefulness cycle states in cats. Anesthesiology 1995;82:144-152.
Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1949;1:455-473.
Magni F, Moruzzi G, Rossi GF, Zanchetti A. EEG Arousal following in activation of the lower brain-stem by selective injection of barbiture into the vertebral circulation. Arch Ital Biol 1959;97:33-46.
Berlucchi G, Maffei L, Moruzzi G, Strata P. EEG and behavioral effects elicited by cooling of medulla and pons. Arch Ital Biol 1964;102:372-392.
Bonvallet M, Bloch V. Bulbar control of cortical arousal. Science 1961;133:1133-1134.
Bonvallet M, Allen MB. Prolonged spontaneous and evoked reticular activation following discrete bulbar lesions. Electroencephalogr Clin Neurophysiol 1963;15:969-988.
Steriade M, Hobson J. Neuronal activity during the sleep-waking cycle. Prog Neurobiol 1976;6:155-376.
Batini C, Moruzzi G, Palestini M, Rossi GF et al. Effects of complete pontine transections on the sleep-wakefulness rhythm: the midpontine pretrigeminal preparation. Arch Ital Biol 1959;97:1-12.
Moruzzi G. The sleep-waking cycle. Ergeb Physiol 1972;64:1-165.
Kellaway P. Sleep and epilepsy. Epilepsia 1985;(Supl 1)26:15-30.
Fernández-Guardiola A, Martínez A, Fernández-Mas R. Repeated penicillin-induced amygdala epileptic focus in freely moving cats. EEG, polysomnographic (23 h recording) and brain mapping study. Epilepsy Res 1995;22:127-136.
Martínez A, Fernández-Mas R, Valdés-Cruz A, Magdaleno-Madrigal V et al. Efecto de la naloxona sobre un foco epiléptico inducido por penicilina en la amígdala del lóbulo temporal de gatos. EEG y registros polisomnográficos de 23 horas. Salud Mental 2002;25:56-63.
Snider RS, Niemer WT. A stereotaxic atlas of the cat brain. Chicago: University of Chicago Press; 1961.
Wada JA, Sato M. Generalized convulsive seizures induced by daily electrical stimulation of the amygdala in cats. Correlative electrographic and behavioral features. Neurology 1974;24:565-574.
Ursin R, Sterman MB. A manual for standardized scoring of sleep and waking states in the adult cat. Los Angeles: University of California; 1981.
Guzmán-Flores C, Alcaráz M, Fernández-Guardiola A. Rapid procedure to localize electrodes in experimental neurophysiology. Bol Inst Est Med Biol (Mex) 1958;16:29-31.
Reinoso-Suaréz F: Topographischer hirn atlas der katze fuer experimental physiologischer untersuchunger. Darmstadt: I Merk, AC; 1961.
Jaseja H. EEG-desynchronization as the major mechanism of anti-epileptic action of vagal nerve stimulation in patients with intractable seizures: Clinical neurophysiological evidence. Med Hypotheses 2010;74:855–856.
Ring HA, White S, Costa DC, Pottinger R et al. A SPECT study of the effect of vagal nerve stimulation on thalamic activity in patients with epilepsy. Seizure-European J Epilepsy 2000;9:380-384.
Henry TR, Votaw JR, Pennell PB, Epstein CM et al. Acute blood flow changes and efficacy of vagus nerve stimulation in partial epilepsy. Neurology 1999;52:1166-1173.
Reardon F, Mitrofanis J. Organization of the amygdalo-thalamic pathways in rats. Anat Embryol 2000;201:75-84.
Gloor P. Generalized epilepsy with bilateral synchronous spike and wave discharge. New findings concerning its physiological mechanisms. Electroencephalogr Clin Neurophysiol 1978;(Supl)34:245-249.
Kostopoulos GK. Spike-and-wave discharges of absence seizures as transformation of sleep spindles: the continuing development of a hypothesis. Clin Neurophysiology 2000;(Supl 2)111:7-38.
Steriade M, Contreras D. Spike-wave complexes and fast components of cortically generated seizures. I. Role of neocortex and thalamus. J Neurophysiol 1998;80:1439–1455.
Pinault D, Slézia A, Acsády L. Corticothalamic 5–9Hz oscillations are more pro-epileptogenic than sleep spindles in rats. J Physiol 2006;574:209–227.
Steriade M, Gloor P, Llinas RR, Lopes da Silva FH et al. Basic mechanisms of cerebral rhythmic activities. Electroencephalogr Clin Neurophysiol 1990;76:481-508.
Henry TR. Anatomical, experimental, and mechanistic investigations. En: Schacter SC, Schmidt D (eds.). Vagus nerve stimulation. UK: Martin Dunitz Ltd; 2001.
Caous CA, De Sousa BH, Lindsey CJ. Neuronal connections of the paratrigeminal nucleus: a topographic analysis of neurons projecting to bulbar, pontine and thalamic nuclei related to cardiovascular, respiratory and sensory functions. Autonomic Neuroscience Basic Clinical 2001;94:14–24.
Juhasz G, Detari L, Kukorelli T. Effects of hypnogenic vagal stimulation on thalamic neuronal activity in cats. Brain Res Bull 1985;15:437-441.
Dell P, Olson P. Projections thalamiques, corticales et cerebelleuses afferences viscerales vagales. C R Soc Biol (París) 1951;145:1084-1088.
Dell P, Olson P. Projections secondaires mesencephaliques, encephaliques et amygdaliennes des afferences viscerales vagales. C R Soc Biol (París) 1951;145:1088-1091.
Nosjean A, Arluison M, Laguzzi RF. Increase in paradoxical sleep after destruction of serotoninergic innervation in the nucleus tractus solitarius of the rat. Neuroscience 1987;23:469-481.
Simón-Arceo K, Ramírez-Salado I, Calvo JM. Long-lasting enhancment of rapid eye movement sleep and pontogeniculooccipital waves by vasoactive intestinal peptide microinjention into the amygdala temporal lobe. Sleep 2003;26:259-264.
Hobson JA, Stickgold R, Pace-Schott EF. The neuropsychology of REM sleep dreaming. Neuroreport 1998;9:1-14.
Pal D, Madan V, Mallick BN. Neural mechanism of rapid eye movement sleep generation: Cessation of locus coeruleus neurons is a necessity. Sheng Li Xue Bao 2005;57:401-413.
Gloor P, Avoli M, Kostopoulos G. Thalamocortical relationships in generalized epilepsy with bilaterally synchronous spike-and-wave discharges. En: Avoli M, Gloor P, Kostopoulos G, Naquet R (eds.). Generalized epilepsy. Boston MA: Birkäuser; 1990.
Nobili L, Baglietto MG, Beelke M, De Carli F et al. Modulation of sleep interictal epileptiform discharges in partial epilepsy of childhood. Clin Neurophysiol 1999;110:839-845.
Steriade M, Contreras D. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J Neurosci 1995;15:604-622.
Goard M, Dan Y. Basal forebrain activation enhances cortical coding of natural scenes nature. Nat Neurosci 2009;12:1444-1451.
Valverde F. Reticular formation of the pons and medulla oblongata. A Golgi study. J Comp Neurol 1961;116:71-99.
Rizzo P, Beelke M, De Carli F, Canovaro P et al. Chronic vagus nerve stimulation improves alertness and reduces rapid eye movement sleep in patients affected by refractory epilepsy. Sleep 2003;26:607-611.
Bazil CW. Sleep. En: Schachter SC, Holmes GL, Kasteleijn-Nolst DGA (eds.). Behavioral aspects of epilepsy. New York: Demos Medical Publishing; 2008.
Kapp BS, Markgraf CG, Schwaber JS, Bilyk-Spafford T. The organization of dorsal medullary projections to the central amygdaloid nucleus and parabrachial nuclei in the rabbit Neuroscience 1989;30:717-732.
Carmona L. Caracterización de los sistemas de excitación e inhibición presentes en el foco epiléptico amigdalino inducido por la administración intracerebral de penicilina G en la rata. Tesis de maestría en ciencias. México D.F., 2002.
Saper CB, Loewy AD. Efferents connections of the parabrachial nucleus in the rat. Brain Res 1980;197:291-317.
Groves DA, Bowman EM, Brown VJ. Recordings from the rat locus coeruleus during acute vagal nerve stimulation in the anaesthetised rat. Neurosci Lett 2005;379:174–179.
Krahl SE, Clark KB, Smith DC, Browning RA. Locus coeruleus lesions suppress the seizure-attenuating effects of vagus nerve stimulation. Epilepsia 1998;39:709-714.
Van Bockstaele EJ, Peoples J, Telegan P. Efferent projections of the nucleus of the solitary tract to peri-locus coeruleus dendrites in rat brain: evidence for a monosynaptic pathway. J Com Neurol 1999;412:410-428.