2012, Number 1
<< Back Next >>
Rev Cubana Farm 2012; 46 (1)
Evaluation of the reactive fractal dimension of magnesium, manganese and zinc glycinates
Benavides AJF, Tobón ZGE
Language: Spanish
References: 23
Page: 11-20
PDF size: 137.77 Kb.
ABSTRACT
Introduction: Complexes of glycine and cations magnesium, manganese and zinc, could be included in the formulation of a nutritional supplement that provides adequate absorption of these metals into the body without gastrointestinal disturbances.
Objective: to study the solubility of complexes of glycine and cations manganese, zinc and magnesium.
Methods: dissolution and image analysis studies were performed. The synthesis and verification of the formation of complexes were carried out by infrared spectroscopy, differential scanning calorimetry, thermal gravimetric analysis, and X-ray diffraction of dust.
Results: the image analysis showed some descriptors such as circularity, the Ferret diameter and the fractal dimension. The latter was related to the water dissolution
process in order to obtain two associated properties, that is, the surface fractal dimension and the reactive fractal dimension.
Conclusions: these results showed that the dissolution of glycinates occurs through the pores or cracks found in their particle surfaces and that these complexes are suitable for use in nutritional formulations as sources of magnesium, manganese and zinc.
REFERENCES
Hanikenne M, Merchant S, Hamel P. Transition metal nutrition: a balance between deficiency and toxicity. The Chlamydomonas: organellar and metabolic processes. 2nd ed. Ottawa: David Stern; 2009. p. 333-99.
Violante A, Ricciardella M, Pigna M, Capasso R. Effects of organic ligands on the adsorption of trace elements onto metal oxides and organo-mineral complexes. In: Huang PM, Gobran GR, eds. Biogeochemistry of trace elements in the rhizosphere. Amsterdam: Elsevier; 2005. p. 157-82.
Casanueva E, Kaufer M, Pérez A, Arroyo P. Nutriología Médica. México, DF: Panamericana; 1995. p. 329-421.
Abdessamad Arbaoui, Redshaw C, Sanchez-Ballester NM, Elsegood MRJ, Hughes DL. Bimetallic copper(II) and zinc(II) complexes of acyclic Schiff base ligands derived from amino acids. Inorganica Chimica Acta. 2011;365:96-102.
Niklas N, Wolf S, Liehr G, Anson CE, Powell AK, Alsfasser R. Ni(II), Cu(II) and Zn(II) complexes of a bifunctional bis(picolyl) amine (bpa) ligand derived from glycine. Inorganica Chimica Acta. 2000;314:126-32.
Tobón G, Benavides J, Flórez O. Copper glycinate: an approach to its solubility. Rev Cubana Farm [Internet]. 2009;43(1). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75152009000100005&lng=es
O´Brien P. The preparation and characterization of the geometric isomers of a coordination complex: cis- and trans glycinate copper complex (II). J Chem Educ. 1982;59:1052-3.
United States Pharmacopeial Convention. Physical test and Determinations. The official compendia of standards USP 32 NF 27 Dietary supplements. Rovkville: Mack Printing; 2010. p. 1057-120.
Tobón G, Flórez O, Baena J. Validación de la Técnica de Análisis del tamaño de partículas por medio de un microscopio de luz óptica asistido por un computador personal. Vitae. 2006;13:85-95
Farin D, Avnir D, Reactive Fractal Surface. J Phys Chem. 1987;91:5517-21.
Farin D, Avnir D. Use of fractal geometry to determine effects of surface morphology on drug dissolution. J Pharm Sci. 1992;81:54-7.
United States Pharmacopeial Convention. Physical test and Determinations. The official compendia of standards USP 32-NF 25. Particle size distribution estimation by analytical sieving. Rockville: Mack Printing; 2010.
United States Pharmacopeial Convention. Physical test and Determinations. The official compendia of standards USP 32-NF 27. Dissolution. Rockville: Mack Printing; 2010.
Valores de referencia diarios y nivel de ingesta máximo tolerable de vitaminas, minerales y oligoelementos para suplementos dietarios. República de Colombia, Ministerio de la Protección Social. Decreto 3249 de 2006.
Fischer G, Cao X, Cox N, Francis M. The FT-IR spectra of glycine and glycylglycine zwitterions isolated in alkali halide matrices. Chemical Physics. 2005;313:39-49.
Wagner C, Baran E. Vibrational spectra of Zn(II) complex of the amino acids with hydrophobic residues. Spectrochimica Acta. 2009;72:936-40.
Casale A, Robertis A, Stefano C, Gianguzza A, Patan G, Rigano C, Sammartano S. Thermodynamic parameters for the formation of glycine complexes with magnesium(II), calcium(II), lead(II), manganese(II), cobalt(II), nickel(II), zinc(II) and cadmium(II) at different temperatures and ionic strengths, with particular reference to natural fluid conditions. Thermochimica Acta. 1995;255:109-41.
Morozov S, Malkov A, Malygin A. Synthesis of Porous Magnesium Oxide by Thermal Decomposition of Basic Magnesium Carbonate. Russian J General Chemistry. 2003;73:33-42.
Mrozek R, Rzczyñska Z, Sikorska-Iwan M. Thermal analysis of manganese (II) complex with glycine. J Thermal Analysis Calorimetry. 2001;63:839-46.
Kanari N, Mishra D, Gaballah I, Dupré B. Thermal decomposition of zinc carbonate hydroxide. Thermochimica Acta. 2004;410:93-100.
Bouwmana A, Bosmaa J, Vonkb P, Wesselinghc J, Frijlinkd H. Which shape factor(s) best describe granules. Powder Technology. 2004;146:66-7.
Huang L, Tong W. Impact of solid state properties on develop ability assessment of drug candidates. Advanced Drug Delivery Reviews. 2004;56:321-34.
Cheung K, Wong W, Ma D, Lai T, Wong K. Transition metal complexes as electrocatalystsdevelopment and applications in electro-oxidation reactions. Coordination Chemistry Reviews. 2007;251:2367-85.