2012, Number 1
<< Back Next >>
Bol Med Hosp Infant Mex 2012; 69 (1)
Physical activity is a prognostic factor for bone mineral density in Mexican children
Vivanco-Muñoz N, Reyes-Sánchez M, Lazcano E, Díaz R, Antúnez O, Clark P
Language: English
References: 20
Page: 40-45
PDF size: 377.43 Kb.
Text Extraction
Background. Bone mass is similar in pre-pubertal girls and boys and double in both genders between the onset of puberty and early adult life. Exogenous factors such as nutrition and exercise contribute to the acquisition of bone mass. The objective of this project was to correlate calcium intake and level of physical activity with bone mineral density (BMD) in a sample of Mexican school-age children.
Methods. A validated questionnaire was applied. The questionnaire included the following dimensions: (a) sociodemographic information, (b) type of sports and games that involved physical activity and hours per week dedicated to them, (c) inactivity measured by hours expended watching TV or playing videogames per day and (d) dietary calcium. After completing the questionnaire, the children were invited to have a BMD and total body composition assessment using a dual-energy x-ray absorptiometry (DXA) (Prodigy LUNAR).
Results. In this cross-sectional study, 212 children were included, 48.6% were girls. The average total BMD in boys and girls was 0.8805 ± 0.056 g/cm
2 and 0.8788 ± 0.056g/cm
2, respectively, with significant differences in the groups of 10- and 12-year-old girls. An average of 10.9 ± 6.48 h of weekly physical activity was reported in boys and 10.6 ± 7.31 h in girls. Number of glasses of milk consumed was reported (1.7 ± 0.95 and 1.33 ± 0.91) per day in boys and girls, respectively. Differences in BMD in 10- and 12-year-old girls adjusted according to menarche were found. In the linear regression analysis, lean body mass was significantly associated with total, L2-L4, pelvis, and forearm BMD. Physical activity was significantly associated with leg BMD and age was associated with pelvis and forearm BMD.
Conclusions. High lean body mass, menarche and regular intense physical activity are predictors for a higher BMD in school-age children in Mexico City.
REFERENCES
Markou KB, Theodoropoulou A, Tsekouras A, Vagenakis AG, Georgopoulos NA. Bone acquisition during adolescence in athletes. Ann NY Acad Sci 2010;1205:12-16.
Gunter K, Baxter-Jones AD, Mirwald RL, Almstedt H, Fuchs RK, Durski S, et al. Impact exercise increases BMC during growth: an 8-year longitudinal study. J Bone Miner Res 2008;23:986-993.
Bass S, Pearce G, Bradney M, Hendrich E, Delmas PD, Harding A, et al. Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res 1998;13:500-507.
Nelson ME, Fiatarone MA, Morganti CM, Trice I, Greenberg RA, Evans WJ. Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures. A randomized controlled trial. JAMA 1994;272:1909-1914.
McCulloch RG, Bailey DA, Houston CS, Dodd BL. Effects of physical activity, dietary calcium intake and selected lifestyle factors on bone density in young women. CMAJ 1990;142:221-227.
Lips P, Bouillon R, van Schoor NM, Vanderschueren D, Verschueren S, Kuchuk N, et al. Reducing fracture risk with calcium and vitamin D. Clin Endocrinol (Oxf) 2010;73:277-285.
Aloia JF, Vaswani AN, Yeh JK, Cohn SH. Premenopausal bone mass is related to physical activity. Arch Intern Med 1988;148:121-123.
Iuliano-Burns S, Saxon L, Naughton G, Gibbons K, Bass SL. Regional specificity of exercise and calcium during skeletal growth in girls: a randomized controlled trial. J Bone Miner Res 2003;18:156-162.
Hernández B, Gortmaker SL, Laird NM, Colditz GA, Parra-Cabrera S, Peterson KE. Validity and reproducibility of a questionnaire on physical activity and non-activity for school children in Mexico City. Salud Publica Mex 2000;42:315-323.
Hernández-Ávila JE, González-Avilés L, Rosales-Mendoza E. Manual de usuario. SNUT Sistema de evaluación de hábitos nutricionales y consumo de nutrimentos. México: INSP; 2003.
Mazess RB, Barden HS, Bisek JP, Hanson J. Dual-energy x-ray absorptiometry for total-body and regional bone-mineral and soft-tissue composition. Am J Clin Nutr 1990;51:1106-1112.
Mazess RB, Barden HS, Hanson JA. Body composition by dual-photon absorptiometry and dual-energy x-ray absorptiometry. Basic Life Sci 1990;55:427-432.
Yung PS, Lai YM, Tung PY, Tsui HT, Wong CK, Hung VW, et al. Effects of weight bearing and non-weight bearing exercises on bone properties using calcaneal quantitative ultrasound. Br J Sports Med 2005;39:547-551.
McVeigh JA, Norris SA, Cameron N, Pettifor JM. Associations between physical activity and bone mass in black and white South African children at age 9 yr. J Appl Physiol 2004;97:1006-1012.
Vicente-Rodríguez G, Ara I, Pérez-Gómez J, Dorado C, Calbet JA. Muscular development and physical activity as major determinants of femoral bone mass acquisition during growth. Br J Sports Med 2005;39:611-616.
Zapata LB, Bryant CA, McDermott RJ, Hefelfinger JA. Dietary and physical activity behaviors of middle school youth: the youth physical activity and nutrition survey. J Sch Health 2008;78:9-18; quiz 65-67.
Wang Q, Alén M, Nicholson PH, Halleen JM, Alatalo SL, Ohlsson C, et al. Differential effects of sex hormones on peri- and endocortical bone surfaces in pubertal girls. J Clin Endocrinol Metab 2006;91:277-282.
Chevalley T, Rizzoli R, Hans D, Ferrari S, Bonjour JP. Interaction between calcium intake and menarcheal age on bone mass gain: an eight-year follow-up study from prepuberty to postmenarche. J Clin Endocrinol Metab 2005;90:44-51.
Chevalley T, Bonjour JP, Ferrari S, Rizzoli R. Influence of age at menarche on forearm bone microstructure in healthy young women. J Clin Endocrinol Metab 2008;93:2594-2601.
Kontulainen SA, Macdonald HM, McKay HA. Change in cortical bone density and its distribution differs between boys and girls during puberty. J Clin Endocrinol Metab 2006;91:2555-2561.