2011, Number 3
<< Back Next >>
Rev Biomed 2011; 22 (3)
Differential agglutination of promastigotes of Leishmania infantum Venezuelan strain with lysates from midgut of Lutzomyia evansi and Lutzomyia longipalpis (Diptera:Psychodidae)
Oviedo M, Bastidas G, Sandoval CM, Vivenes A, Bendezu H
Language: Spanish
References: 45
Page: 85-93
PDF size: 158.93 Kb.
ABSTRACT
Introduction. The parasite
Leishmania sp. must adapt the physiological conditions of the digestive tract of the insect that transmits, to ensure their survival and subsequent transmission to the vertebrate host. Leishmania-vector interaction depends on several factors, including the agglutinins of the digestive tract of sandflies, involved along with lipophosphoglycan molecules of the parasite surface, the adhesion of the latter, the intestinal epithelium of the insect. Therefore, both molecules are involved in susceptibility of the sandfly species to infection.
Objective. To measure and compare the agglutination titer between midgut lysates
L. longipalpis and
L. evansi wild and colony with
L. infantum promastigotes.
Materials and Methods. The methodology consisted in the evaluation of three groups of lysates of midgut Lutzomyia females, one of females captured in the wild, and two other colony, a females taken 48-hours blood ingest and the other females maintained with a sugary diet for 48 hours.
Results. Find different titles of agglutination between promastigotes of different days of colony of
L. infantum and lysates of midgut of
L. evansi and
L. longipalpis. The only species that register agglutination in dilutions of 1:64 is
L. longipalpis.
Conclusion. This study revealed the presence of agglutinins against promastigotes of
L. infantum in populations of wild habitat and of colony of
L. evansi and
L. longipalpis, but higher in the latter species of phlebotomies. Titles of agglutination increase as it does, the time of cultivation of the Leishmania promastigotes.
REFERENCES
Desjeux P. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 2004; 27: 305-18.
WHO. Of the Scientific Working Group meeting on Leishmaniasis. Disponible: http://apps.who.int/tdr/publications/tdr-research publications/swg-report-leishmaniasis/pdf/swg_leish. 2004.
Sacks D, Kamhawi S. 2001. Molecular aspects of parasite-vector and vector-host interactions in Leishmaniasis. Ann Rev Micobiol 2001; 55:453-83.
Soares RP, Macedo ME, Ropert C, Gontijo NF, Almeida IC, Gazzinelli RT, et al. Leishmania chagasi: lipophosphoglycan characterization and binding to the midgut of the sand fly vector Lutzomyia longipalpis. Mol Biochem Parasitol 2002; 121: 213-24.
Bates PA. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int J Parasitol. 2007; 37(10):1097-106.
Warburg A, Tesh RB, McMahon-Pratt D. Studies on the attachment of Leishmania flagella to sand fly midgut epithelium. J Protozool 1989; 36:613–7.
Sacks DL, Modi G, Rowton E, Spath G, Epstein L, Turco SJ, et al. The role of phosphoglycans in Leishmania-sandfly interactions. Proc Natl Acad Sci USA 2000; 97: 406–11.
Kamhawi S. Phlebotominae sand flies and Leishmania parasites: friends or foes? Trends Parasitol 2006; 22: 439–45.
Sharon N, Lis H. Lectins as cell recognition molecules. Science 1989; 246(4927):227-34.
Basseri HR. 2002. Role of lectins in interaction between parasites and important insects’ vectors. Iranian J Publ Health 2002; 31: 69-74.
Volf P, Skarupova S, Man P. Charaterization of the lectin from females of Phlebotomus duboscqi sand flies. Eur J Biochem 2002; 269(24):6294-301.
Nieves S, Rondon M. Sobrevivencia del parásito Leishmania en el insecto vector: interacciones moleculares. Rev Soc Ven Microbiol 2007; 27:66-72.
Sacks DL, Hieny S, Sher A. Identification of cell surface carbohydrate and antigenic changes between noinfective and infective development stages of Leishmania major promastigotes. J Immunol 1985; 135: 564-9.
Wallbanks K, Ingram GA, Molyneux DH. The agglutination of erytrocytes and Leishmania parasites by sandfly gut extracts: evidence for lectin activity. Trop Med Parasitol 1986; 37:409-18.
Volf P, Killick-Kendrick R, Bates PA, Molineux D. Comparison of the haemagglutination activities in gut and head extracts of various species and geographic populations of phlebotominae sandflies. Ann Trop Med Parasitol 1994; 88:337-40.
Svobodová M, Volf P, Killick-Kendrick R. Agglutination of Leishmania promastigotes by midgut lectins from various species of Phlebotominae. Ann Trop Med Parasitol 1996; 90(3): 329-36.
Svobodova M, Votypka J, Peckova J, Dvorak V, Nasereddin A, Baneth G, et al. Distinct transmission cycles of Leishmania tropica in 2 adjacent foci, northern Israel. Emerg Infect Dis 2006; 12:1860-8.
VolfP, Peckova J. Sand flies and Leishmania: specific versus permissive vectors. Trends Parasitol 2007; 23:91-92.
Moreno G, Oviedo M. Bionomy of vectors of american visceral leishmaniasis in Trujillo state, Venezuela. II. Longitudinal study of Lutzomyia evansi in endemic situation. Rev Talleres 1995; 4: 66.
Travi BL, Montoya J, Gallego J, Jaramillo C, Llano R, Velez ID. Bionomics of Lutzomyia evansi (Diptera: Psychodidae) vector of visceral leishmaniasis in northern Columbia J Med Entomol 1996; 33(3):278-85.
Feliciangeli MD, Rodriguez N, de Gugliemo Z, Rodriguez A. The re-emergence of American visceral leishmaniasis in a old focus in Venezuela. II. Vectors and parasites. Parasite 1999; 6:113-20.
Montoya-Lerma J, Cadena H, Oviedo M, Barazarte R, Bruno T, Ready P, et al. Comparative vectorial efficiencia Lutzomyia evansi and Lutzomyia longipalpis transmitting Leishmania chagasi parasites. Acta Trop 2003; 85: 19-29.
Montoya-Lerma, J. The biology of Leishmaniasis vectors in the San Andres de Sotavento focus, Colombia. Thesis PhD. Deparment of Medical Parasitology, London School of Hygiene and Tropical Medicine, London, 182 pp. 1986
Pimenta PF, Saravia EMB, Rowton E, Modi GB, Garraway LA, Beverley S, et al. Evidence that vectorial competence of phlebotominae sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc Natl Acad Sci 1994; 91: 9155-9.
Kamhawi S, Modi GB, Pimenta PFP, Rowton E, Sacks DL. The vectorial competence of Phlebotomus sergenti is specific for Leishmania tropica and is controlled by species-specific, lipophosphoglycan mediated midgut attachment. Parasitology 2000; 121: 25-33.
Bastidas G, Oviedo M, Vivenes A, González A. Determinación del azúcar preferencial en la dieta de Lutzomyia evansi (Nuñeztovar) (Diptera: Psychodidae). Rev Colomb Entomol 2004; 30(2): 193-6.
GenBank Sequence. Leishmania chagasi AF308682. Disponible: //www.ncbi.nlm.nih.gov/Genbank/update.html.
Talamas-Rohana P, Wright SD, Lennartz MK, Russell DG. Lipophosphoglycan from Leishmania mexicana promastigotes binds to members of the CR3, p150, 95 and LFA-1 family of leukoeyte integrins. J. Immunol 1990; 144:4817-24.
Montoya–Lerma J, Cadena H, Oviedo M, Barazarte R, Travi B, Lane R. Comparative vectorial efficiency of Lutzomyia evansi and Lutzomyia longipalpis for transmitting Leishmania chagasi parasites. Acta Trópica 2003; 85(1):19-29.
Ingram GA, Molyneux DH. Insect lectins: Role in parasite-vector interaction. Lectin Reviews 1991; 1: 103-27.
Molyneux DH, Killick-Kendrick R . Morphology, ultrastructure and life cycles. In: Peters, W. y killick – Kendrick, R(ed). The leishmaniasis in Biology and Medicine. Academy Press, London, England. 1987; 1: 121-76.
Ward RD, Phillips, A, Burnet B, Marcondes CB. The Lutzomyia longipalpis complex: reproduction and distribution Pp. 257-269. in Biosistematics of Haematophagous Insects, ed. Service, M. W. Oxford. Claredon Press.1988.
Jacobson R. Lectin-Leishmania interaction. In Lectinmicroorganisms Interactions, eds Doyle, R. J Slifkin, M. pp 191-223. New York: Marcel Decker. 1994.
Maingon RD, Ward RD, Hamilton JG, Bauzer LG, Peixoto AA. The Lutzomyia longipalpis species complex: does population sub-structure matter to Leishmania transmission? Trends Parasitol 2008; 24(1):12-7.
Myskova J, Svobodova M, Beverley SM, Volf P. A lipophosphoglycan-independent development of Leishmania in permissive sand flies. Microbes Infect 2007; 9(3): 317-24.
Kamhawi S, Ramalho-Ortigao M, Pham VM, Kumar S, Lawyer PG, Turco SJ, et al. A role for insect galectins in parasite survival. Cell 2004; 119:329-41.
Walters LI, Irons KP, Chaplin G, Tesh RB. Life cycle of Leishmania major (Kinetoplastida: Trypanosomatidae) in the neotropical sand fly Lutzomyia longipalpis (Diptera: Psychodidae). J Med Entomol 1993; 30:699-718.
Sadlova J, Hajmova M, Volf P. Phlebotomus (Adlerius) halepensis vector competence for Leishmania major and L. tropica. Med Vet Entomol 2003; 17:244–50.
Pimenta PF, Turco SJ, McConville MJ, Lawyer PG, Perkins PV, Sacks DL. Stage- Specific Adhesion of Leishmania Promastigotes to the sandfly midgut. Science 1992; 256:1812.
Muskus CE. Papel del LPG y carbohidratos en la virulencia de Leishmania del Subgénero Vianna. Tesis de Magíster en Microbiología y Parasitología. Mimeografiado. Universidad del Valle, Departamento de Microbiología, Corporación CIDEIM, Santiago de Cali – Colombia. Pp 72. 1997.
Svobodova, M. Influence of lectin inhibitors on Leishmania major growth and morphology. Acta Trop 2000; 76(3):285-8.
Volf P, Svobodová M, Dvoráková E. Bloodmeal digestion and Leishmania major infections in Phlebotomus duboscqi: effect of carbohydrates inhibiting midgut lectin activity. Med Vet Entomol 2001; 15(3):281-6.
Volf P, Palonova L, Svobodova M. Midgut lectins of sandflies. Ann Trop Med Parasitol 1995; 88:337-40.
Oviedo M, Moreno G, Graterol D. Bionomía de los vectores de leishmaniasis visceral en el Estado Trujillo, Venezuela. III. Colonización de Lutzomyia evansi. Bol Dir Malareol San Amb 1995; 25(1):269-75.
Mahoney AB, Sacks DL, Saraiva E, Modi G, Turco SJ. 1999. Intra-species and stagespecific polymorphisms in lipophosphoglycan structure control Leishmania donovani-sand fly interactions. Biochemistry 1999; 38(31):9813-23.