2003, Number 2
<< Back Next >>
Rev Mex Ing Biomed 2003; 24 (2)
Bidirectional Doppler System for Blood Flow Measurement based on an Open Architecture
García F, Moreno E, Solano J, Barragán M, Sotomayor A, Fuentes M
Language: Spanish
References: 22
Page: 135-143
PDF size: 193.91 Kb.
ABSTRACT
This paper describes the design of a continuous wave blood flow bi-directional Doppler system based on an open, high-resolution architecture that is portable and low-cost. The system incorporates the advantages of expensive systems with dedicated hardware. The system is composed of a flow detector probe, a signal conditioning stage, a direction detection module, a signal processing stage and a GUI. The direction detection of the signal is achieved using a fast digital Phasing Filter. The Doppler signal is processed by a Short-Time Fourier Transform-based algorithm. This is commonly used as a reference. Nevertheless, the system allows us to incorporate alternative high-resolution spectral estimation methods that might offer more precise information to the specialist.
REFERENCES
Evans DH, McDicken WN. Doppler ultrasound, physics, instrumentation, and signal processing, John Wiley & Sons Ltd., Second Edition, 2000.
Cavaye MD, White RA. Arterial Imaging -Modern and Developing Technology. Chapman & Hall Medical, London. 1993.
Powis RL, Powis WJ. A Thinker’s Guide to Ultrasonic Imaging. Urban and Schwarzenberg. 1984.
Fish PJ. Physics and Instrumentation of Diagnostic Medical Ultrasound, John Wiley & Sons, Chichester, U.K. 1990.
Nizamettin A, Lingke F, Evans DH. Quadrature-to-directional format conversion of Doppler signals using digital methods. IOP Publishing Ltd. Physiol Meas 1994; 15: 181-199.
Nizamettin A, Evans DH. Implementation of Directional Doppler Techniques Using a Digital Signal Processor. Electrocardiography, Myocardial Contraction and Blood Flow Supplement. Med. & Biol. Eng & Compt. 1994; 32: s157-s164.
Nizamettin A, Evans DH. A fast frequency domain algorithm for decoding quadrature Doppler signals. 18th Annual Conference of IEEE Engineering in Medicine and Biology Society, Amsterdam 1996: 993-994.
Marple LS. Computing the Discrete-Time “Analytic” Signal via FFT. IEEE Trans. on Signal Processing, 1999; 47(9): 2600-2603.
Ruano MG, García NDF, Fish PJ, Fleming PJ. Alternative parallel implementations of an ar-modified covariance spectral estimator for diagnostic ultrasonic blood flow studies. Parallel Computing, 1993; 19: 463-476.
Solano J, García NDF, Ruano MG. High Performance Parallel-DSP Computing in Model-based Spectral Estimation. Microprocessors and Microsystems (Elsevier), 1999; 23(6): 337-344.
Solano J, Rodríguez K, García NDF. Model-based Spectral Estimation of Doppler Signals using Parallel Genetic Algorithms. Journal of Artificial Intelligence in Medicine (Elsevier). 2000; 19(1): 75-89.
Vaitkus PJ, Cobbold RSC. Comparative Study and Assessment of Doppler Ultrasound Spectral Estimation. Part I Estimation Method. Ultrasound in Medicine And Biology, 1988; 14(8): 661-672.
Papoulis A. Signal Analysis, New York: McGraw-Hill, 1977.
Fish PJ. Non-Stationary broadening in pulsed Doppler spectrum measurements. Ultrasound in Medicine & Biology. 1991; 17: 147-155.
Atkinson P. A fundamental interpretation of ultrasonic Doppler velocimeter. Ultrasound in Med Biol 1975; 2: 107-111.
Atkinson P, Woodcock JP. Doppler Ultrasound and its use in Clinical Measurement. Academic Press Inc. London LTD, 1982.
Sotomayor A, Fuentes M, García NF, Moreno E, Barragán M. Método digital para la detección de la dirección del flujo sanguíneo en sistemas Doppler ultrasónicos. Rev Mex Ing Biomédica 2002; 23(2): 123-127.
Jensen JA. Estimation of blood velocities using ultrasound, Cambridge University Press, U.K. 1996.
Madeira MM, Bellis SJ, Beltran LA, Solano J, Garcia NDF, Marnane WP, Tokhi MO, Ruano MG. High performance computing for real time spectral estimation. IFAC Journal Control Engineering Practice (Pergamon), 1999; 7(5): 679-686.
David JY, Jones SA, Giddens DP. Modern spectral analysis techniques for blood flow velocity and spectral measurements with pulsed Doppler ultrasound, IEEE trans. On Biomedical Engineering, 1991; 38: 589-596.
Ruano MG, Fish PJ. Cost/Benefit Selection of Spectral Estimators for Use with Ultrasonic Doppler Blood Flow Instruments, PROC. ICASSP-92. 1992.
García NF, Solano GJ, Rubio AE, Moreno HE. Parallel Computing in Time-Frequency Distributions for Doppler Ultrasound Blood Flow Instrumentation. Revista Mexicana de Ingeniería Biomédica 2001; XXII(1): 12-19.