2011, Number 2
<< Back Next >>
Residente 2011; 6 (2)
Inflamación y angiogénesis: el papel facilitador de las células cebadas en el desarrollo del melanoma
Jiménez-Andrade GY, González-Espinosa C
Language: Spanish
References: 19
Page: 111-119
PDF size: 97.62 Kb.
ABSTRACT
Angiogenesis is a physiological process that occurs in all stages of life. Under the adequate mechanisms of control, it contributes to growth, wound healing and other important processes. However, under non-regulated conditions, it can add to the growth of malignant tumors. On the other hand, inflammation, the initial innate response against tissue damage, promote tissue repair through the production of multiple chemical mediators able to modify endothelial permeability and endothelial cell proliferation. Immune cells-derived Vascular Endothelial Growth Factor (VEGF) and other pro-angiogenic molecules promote physiological and pathological angiogenesis. In particular, mast cells (widely recognized as initiators of allergic reactions) are able to release proteases, VEGF, cytokines and chemokines that contribute to vascularization of tissues and solid tumors. Different studies have shown a close association between MC activation and development and progression of melanoma. Evidence indicates that tumor vascularization and MC density correlate with poor prognosis. This review describes the participation of inflammation, particularly the influence of mast cells in promote tumoral angiogenesis in melanoma.
REFERENCES
Patan S. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol 2000; 50(1-2): 1-15.
Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008; 454(7203): 436-444.
Kalesnikoff J, Galli SJ. New developments in mast cell biology. Nat Immunol 2008; 9(11): 1215-1223.
Ribatti D. Transgenic mouse models of angiogenesis and lymphangiogenesis. Int Rev Cell Mol Biol 2008; 266: 1-35.
Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011; 473(7347): 298-307.
Rakoff-Nahoum S. Why cancer and inflammation? Yale J Biol Med 2006; 79(3-4): 123-130.
Ferrara N. Molecular and biological properties of vascular endotelial growth factor. J Mol Med 1999; 77: 527-543.
Crivellato E, Nico B, Ribatti D. Mast cells and tumour angiogenesis: New insight from experimental carcinogenesis. Cancer Lett 2008; 269(1): 1-6.
Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420(6917): 860-867.
Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell 2010; 140(6): 771-776.
Rigel DS. Epidemiology of melanoma. Semin Cutan Med Surg 2010; 29: 204-209.
Mahabeleshwar GH, Byzova TV. Angiogenesis in melanoma. Semin Oncol 2007; 34(6): 555-565.
Starkey JR, Crowle PK, Taubenberger S. Mast-cell-deficient W/Wv mice exhibit a decreased rate of tumor angiogenesis. Int J Cancer 1988; 42(1): 48-52.
Dvorak AM, Mihm MC Jr, Osage JE, Dvorak HF. Melanoma. An ultrastructural study of the host inflammatory and vascular responses. J Invest Dermatol 1980; 75(5): 388-393.
Duncan LM, Richards LA, Mihm MC Jr. Increased mast cell density in invasive melanoma. J Cutan Pathol 1998; 25(1): 11-15.
Ribatti D, Ennas MG, Vacca A, Ferreli F, Nico B, Orru S, Sirigu P. Tumor vascularity and tryptase-positive mast cells correlate with a poor prognosis in melanoma. Eur J Clin Invest 2003; 33(5): 420-425.
Guidolin D, Crivellato E, Nico B, Andreis PG, Nussdorfer GG, Ribatti D. An image analysis of the spatial distribution of perivascular mast cells in human melanoma. Int J Mol Med 2006; 17(6): 981-987.
Streit M, Detmar M. Angiogenesis, lymphangiogenesis, and melanoma metastasis. Oncogene 2003; 22(20): 3172-3179.
Lutzky J. New therapeutic options in the medical management of advanced melanoma. Semin Cutan Med Surg. 2010; 29(4): 249-257